@article{VSPUI_2019_15_2_a4,
author = {N. A. Moldovyan and I. K. Abrosimov},
title = {Post-quantum electronic digital signature scheme based on the enhanced form of the hidden discrete logarithm problem},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {212--220},
year = {2019},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a4/}
}
TY - JOUR AU - N. A. Moldovyan AU - I. K. Abrosimov TI - Post-quantum electronic digital signature scheme based on the enhanced form of the hidden discrete logarithm problem JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 212 EP - 220 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a4/ LA - ru ID - VSPUI_2019_15_2_a4 ER -
%0 Journal Article %A N. A. Moldovyan %A I. K. Abrosimov %T Post-quantum electronic digital signature scheme based on the enhanced form of the hidden discrete logarithm problem %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 212-220 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a4/ %G ru %F VSPUI_2019_15_2_a4
N. A. Moldovyan; I. K. Abrosimov. Post-quantum electronic digital signature scheme based on the enhanced form of the hidden discrete logarithm problem. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 2, pp. 212-220. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a4/
[1] Menezes A. J., Van Oorschot P. C., Vanstone S. A., Handbook of applied cryptography, CRC Press, Boca Raton, FL, 1997, 780 pp. | MR | Zbl
[2] Shor P. W., “Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer”, SIAM Journal of Computing, 26 (1997), 1484–1509 | DOI | MR | Zbl
[3] Buchmann J., Dahmen E., Post-quantum cryptography, ed. D. J. Bernstein, Springer, Berlin–Heidelberg, 2009, 245 pp. | MR | Zbl
[4] Merkle R. Ch., Secrecy, authentication, and public key systems, Technical report No 1979-1, Ctanford, 1979, 193 pp. | Zbl
[5] McEliece R. J., A public-key cryptosystem based on algebraic coding theory, DSN Progress Report No 42-44, 1978, 114–116
[6] Hoffstein J., Pipher J., Silverman J. H., “NTRU: A ring based public key cryptosystem”, Algorithmic Number Theory, ANTS III (Portland, OR, June 1998), Lecture Notes in Computer Science, 1423, ed. J. P. Buhler, Springer-Verlag, Berlin, 1998, 267–288 | DOI | MR | Zbl
[7] Courtois N., “The security of Hidden Field Equations (HFE)”, Topics in Cryptology — CT-RSA 2001, Lecture Notes in Computer Science, 2020, Springer Press, Berlin–Heidelberg, 2001, 266–281 | DOI | MR | Zbl
[8] “Post-quantum cryptography”, 9th Intern. conference, PQCrypto 2018 (Fort Lauderdale, FL, USA, April 9–11, 2018), Lecture Notes in Computer Science, 10786, Springer Press, Berlin–Heidelberg, 2018
[9] “Federal Register:: Announcing Request for Nominations for Public-Key Post-Quantum Cryptographic Algorithms”, Federal Register. The Daily Journal of the United States Goverment (accessed: 15.01.2019) https://www.gpo.gov/fdsys/pkg/FR-2016-12-20/pdf/2016-30615.pdf
[10] Verma G. K., “A proxy blind signature scheme over braid groups”, Intern. Journal of Network Security, 9:3 (2009), 214–217
[11] Myasnikov A., Shpilrain V., Ushakov A., “A practical attack on a braid group based cryptographic protocol”, Advances in Cryptology, CRYPTO'05, Lecture Notes in Computer Science, 3621, Springer-Verlag, Berlin, 2005, 86–96 | DOI | MR | Zbl
[12] Moldovyan N. A., Moldovyan A. A., “Finite non-commutative associative algebras as carriers of hidden discrete logarithm problem”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 12:1 (2019), 66–81 | Zbl
[13] Moldovyan D. N., “Cryptoschemes over hidden conjugacy search problem and attacks using homomorphisms”, Quasigroups and Related Systems, 18:2 (2010), 165–176 | MR | Zbl
[14] Moldovyan D. N., “Post-quantum public key-agreement scheme based on a new form of the hidden logarithm problem”, Computer Science Journal of Moldova, 27:1(78) (2019), 56–72 | MR
[15] Moldovyan D. N., Moldovyan N. A., “Features of the structure of groups of vectors and the synthesis of cryptographic schemes based on them”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 4, 84–93 (In Russian)
[16] Moldovyan N. A., Abrosimov I. K., Kovaleva I. V., “Post-quantum no-key encryption protocol”, Information security issues, 2017, no. 3 (118), 3–13 (In Russian) | MR
[17] Schnorr C. P., “Efficient signature generation by smart cards”, Journal of Cryptology, 4:3 (1991), 161–174 | DOI | MR | Zbl