A generalized Gibbs' lemma and a Wardrop equilibrium
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 2, pp. 199-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article, a generalized Gibbs' lemma is stated and proved. A conclusion of this lemma corresponds to a definition of Wardrop equilibrium in transport networks. This allows us to naturally introduce a well known convex programming problem with linear constraints whose solution is a Wardrop equilibrium vector. The complicated definition of the Wardrop equilibrium is analyzed in detail (typical examples are given). The reason of the Braess paradox' appearance is specified. A large example, that illustrates how the Wardrop equilibrium vector changes when a road with zero driving time is added into the transport network, is also given.
Keywords: generalized Gibbs' lemma, Wardrop equilibrium, Braess paradox, convex programming.
@article{VSPUI_2019_15_2_a3,
     author = {V. N. Malozemov and N. A. Solovyeva},
     title = {A generalized {Gibbs'} lemma and a {Wardrop} equilibrium},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {199--211},
     year = {2019},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a3/}
}
TY  - JOUR
AU  - V. N. Malozemov
AU  - N. A. Solovyeva
TI  - A generalized Gibbs' lemma and a Wardrop equilibrium
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 199
EP  - 211
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a3/
LA  - ru
ID  - VSPUI_2019_15_2_a3
ER  - 
%0 Journal Article
%A V. N. Malozemov
%A N. A. Solovyeva
%T A generalized Gibbs' lemma and a Wardrop equilibrium
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 199-211
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a3/
%G ru
%F VSPUI_2019_15_2_a3
V. N. Malozemov; N. A. Solovyeva. A generalized Gibbs' lemma and a Wardrop equilibrium. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 2, pp. 199-211. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a3/

[1] Danskin J. M., The theory of max-min and its application to weapons allocation problems, Springer-Verlag Publ., Berlin–Heidelberg–New York, 1967, 128 pp. | MR | Zbl

[2] Braess D., Nagurney A., Wakolbinger T., “On a paradox of a traffic planning”, Transportation Science, 39:4 (2005), 446–450 | DOI

[3] Wardrop J. G., “Some theoretical aspects of road traffic research”, Proceedings of the Institute of Civil Engineers, v. II, 1952, 325–378 | DOI

[4] Patriksson M., The traffic assignment problem: models and methods, Dover Publ., Mineola, 2015, 240 pp.

[5] Mazalov V. V., Mathematical theory of games and applications, Publishing house “Lan”', Saint Petersburg, 2016, 448 pp.