A generalized Gibbs' lemma and a Wardrop equilibrium
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 2, pp. 199-211
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article, a generalized Gibbs' lemma is stated and proved. A conclusion of this lemma corresponds to a definition of Wardrop equilibrium in transport networks. This allows us to naturally introduce a well known convex programming problem with linear constraints whose solution is a Wardrop equilibrium vector. The complicated definition of the Wardrop equilibrium is analyzed in detail (typical examples are given). The reason of the Braess paradox' appearance is specified. A large example, that illustrates how the Wardrop equilibrium vector changes when a road with zero driving time is added into the transport network, is also given.
Keywords:
generalized Gibbs' lemma, Wardrop equilibrium, Braess paradox, convex programming.
@article{VSPUI_2019_15_2_a3,
author = {V. N. Malozemov and N. A. Solovyeva},
title = {A generalized {Gibbs'} lemma and a {Wardrop} equilibrium},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {199--211},
year = {2019},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a3/}
}
TY - JOUR AU - V. N. Malozemov AU - N. A. Solovyeva TI - A generalized Gibbs' lemma and a Wardrop equilibrium JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 199 EP - 211 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a3/ LA - ru ID - VSPUI_2019_15_2_a3 ER -
%0 Journal Article %A V. N. Malozemov %A N. A. Solovyeva %T A generalized Gibbs' lemma and a Wardrop equilibrium %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 199-211 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a3/ %G ru %F VSPUI_2019_15_2_a3
V. N. Malozemov; N. A. Solovyeva. A generalized Gibbs' lemma and a Wardrop equilibrium. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 2, pp. 199-211. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a3/
[1] Danskin J. M., The theory of max-min and its application to weapons allocation problems, Springer-Verlag Publ., Berlin–Heidelberg–New York, 1967, 128 pp. | MR | Zbl
[2] Braess D., Nagurney A., Wakolbinger T., “On a paradox of a traffic planning”, Transportation Science, 39:4 (2005), 446–450 | DOI
[3] Wardrop J. G., “Some theoretical aspects of road traffic research”, Proceedings of the Institute of Civil Engineers, v. II, 1952, 325–378 | DOI
[4] Patriksson M., The traffic assignment problem: models and methods, Dover Publ., Mineola, 2015, 240 pp.
[5] Mazalov V. V., Mathematical theory of games and applications, Publishing house “Lan”', Saint Petersburg, 2016, 448 pp.