@article{VSPUI_2019_15_2_a2,
author = {A. P. Zhabko and V. V. Provotorov and O. R. Balaban},
title = {Stabilization of weak solutions of parabolic systems with distributed parameters on the graph},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {187--198},
year = {2019},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a2/}
}
TY - JOUR AU - A. P. Zhabko AU - V. V. Provotorov AU - O. R. Balaban TI - Stabilization of weak solutions of parabolic systems with distributed parameters on the graph JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 187 EP - 198 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a2/ LA - en ID - VSPUI_2019_15_2_a2 ER -
%0 Journal Article %A A. P. Zhabko %A V. V. Provotorov %A O. R. Balaban %T Stabilization of weak solutions of parabolic systems with distributed parameters on the graph %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 187-198 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a2/ %G en %F VSPUI_2019_15_2_a2
A. P. Zhabko; V. V. Provotorov; O. R. Balaban. Stabilization of weak solutions of parabolic systems with distributed parameters on the graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 2, pp. 187-198. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a2/
[1] Zhabko A. P., Tihomirov O. G., Chizhova O. N., “On stability to the class of systems with the proportional delay”, Vestnik of Saint Peterburg University. Applied Mathematics. Computer Science. Control Processes, 14:2 (2018), 165–172 (In Russian) | DOI | MR
[2] Alexandrova I. V., Zhabko A. P., “A new LKF approach to stability analysis of linear systems with uncertain delays”, Automatica, 91 (2018), 173–178 | DOI | MR | Zbl
[3] Provotorov V. V., “Boundary control of a parabolic system with delay and distributed parameters on the graph”, Intern. conference “Stability and Control Processes” in memory of V. I. Zubov, SCP, Saint Petersburg University Publ., Saint Petersburg, 2015, 126–128
[4] Podvalny S. L., Provotorov V. V., “The questions of controllability of a parabolic systems with distributed parameters on the graph”, Intern. conference “Stability and Control Processes” in memory of V. I. Zubov, SCP, Saint Petersburg University Publ., Saint Petersburg, 2015, 117–119
[5] Provotorov V. V., “Boundary control of a parabolic system with distributed parameters on a graph in the class of summable functions”, Automation and Remote Control, 76:2 (2015), 318–322 | DOI | MR | Zbl
[6] Podvalny S. L., Provotorov V. V., “Starting control of a parabolic system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 3, 126–142 (In Russian) | MR
[7] Provotorov V. V., Gnilitskaya Yu. A., “Boundary control of a wave systems in the space of the generalized solutions”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2013, no. 3, 112–120 (In Russian)
[8] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka Publ., M., 1973, 407 pp. (In Russian) | MR
[9] Mihlin S. G., Linear partial equation, Vysshaja shkola Publ., M., 1977, 431 pp. (In Russian) | MR
[10] Provotorov V. V., Volkova A. S., Initial boundary value problems with distributed parameters on the graph, Nauchnay kniga Publ., Voronezh, 2014, 188 pp. (In Russian)
[11] Provotorov V. V., “Eigenfunctions of the Sturm–Liouville problem astar graph”, Mathematics, 199:10 (2008), 1523–1545 (In Russian) | MR | Zbl
[12] Provotorov V. V., Provotorova E. N., “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 209–224 (In Russian) | DOI | MR
[13] Lions J.-L., Some methods of solving non-linear boundary value problems, Dunod Gauthier-Villars, Paris, 1968, 587 pp. ; Lions J.-L., Nekotorye metody reshenia nelineinyh kraevyh zadach, Mir Publ., M., 1972, 414 pp. | MR
[14] Provotorov V. V., Ryazhskikh V. I., Gnilitskaya Yu. A., “Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike region”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 | DOI | MR
[15] Provotorov V. V., Provotorova E. N., “Optimal control of the linearized Navier–Stokes system in a netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 428–441 | DOI | MR
[16] Aleksandrov A. Yu., Zhabko A. P., “On stability of solutions to one class of nonlinear difference systems”, Siberian Mathematical Journal, 44:6 (2003), 951–958 (In Russian) | DOI | MR | Zbl
[17] Aleksandrov A., Aleksandrova E., Zhabko A., “Asymptotic stability conditions for certain classes of mechanical systems with time delay”, WSEAS Transactions on Systems and Control, 9 (2014), 388–397 | MR
[18] Aleksandrov A., Aleksandrova E., Zhabko A., “Asymptotic stability conditions of solutions for nonlinear multiconnected time-delay systems”, Circuits Systems and Signal Processing, 35:10 (2016), 3531–3554 | DOI | MR | Zbl
[19] Karelin V. V., “Penalty functions in the control problem of an observation process”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 4, 109–114 (In Russian)
[20] Kamachkin A. M., Yevstafyeva V. V., “Oscillations in a relay control system at an external disturbance”, Control Applications of Optimization 2000, Proceedings of the 11th IFAC Workshop, v. 2, 459–462
[21] Veremey E. I., Sotnikova M. V., “Plasma stabilization by prediction with stable linear approximation”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2011, no. 1, 116–133 (In Russian)