Mots-clés : decomposition
@article{VSPUI_2019_15_2_a1,
author = {A. Yu. Aleksandrov and J. Zhan},
title = {Investigation of ultimate boundedness conditions of mechanical systems via decomposition},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {173--186},
year = {2019},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a1/}
}
TY - JOUR AU - A. Yu. Aleksandrov AU - J. Zhan TI - Investigation of ultimate boundedness conditions of mechanical systems via decomposition JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 173 EP - 186 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a1/ LA - ru ID - VSPUI_2019_15_2_a1 ER -
%0 Journal Article %A A. Yu. Aleksandrov %A J. Zhan %T Investigation of ultimate boundedness conditions of mechanical systems via decomposition %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 173-186 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a1/ %G ru %F VSPUI_2019_15_2_a1
A. Yu. Aleksandrov; J. Zhan. Investigation of ultimate boundedness conditions of mechanical systems via decomposition. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 2, pp. 173-186. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a1/
[1] Voronov A. A., Introduction in dynamics of complex control systems, Nauka Publ, M., 1985, 352 pp. (In Russian)
[2] A. A. Voronov, V. M. Matrosov (eds.), Method of vector Lyapunov functions in stability theory, Nauka Publ, M., 1987, 312 pp. (In Russian) | MR
[3] Matrosov V. M., Vector Lyapunov function method: analysis of dynamical properties of nonlinear systems, Fizmatlit Publ, M., 2001, 384 pp. (In Russian)
[4] Zubov V. I., Analytical dynamics of gyroscopic systems, Sudostroenie Publ, L., 1970, 320 pp. (In Russian)
[5] Merkin D. R., Gyroscopic systems, Nauka Publ, M., 1974, 344 pp. (In Russian)
[6] Pyatnitskii E. S., “The principle of decomposition in the control of mechanical systems”, Papers of Academy of Sciences of the USSR, 300:2 (1988), 300–303 (In Russian) | MR
[7] Chernous'ko F. L., Anan'evskii I. M., Reshmin S. A., Methods of control of nonlinear mechanical systems, Fizmatlit Publ, M., 2006, 328 pp. (In Russian)
[8] Podval'nyi S. L., Provotorov V. V., “Start control of a parabolic system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 3, 126–142 (In Russian)
[9] Provotorov V. V., Ryazhskikh V. I., Gnilitskaya Yu. A., “Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 | DOI | MR
[10] Kosov A. A., “Stability investigation of singular systems via vector Lyapunov functions method”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2005, no. 4, 123–129 (In Russian)
[11] Aleksandrov A. Yu., Chen Y., Kosov A. A., Zhang L., “Stability of hybrid mechanical systems with switching linear force fields”, Nonlinear Dynamics and Systems Theory, 11:1 (2011), 53–64 | MR | Zbl
[12] Aleksandrov A. Yu., Kosov A. A., Chen Y., “Stability and stabilization of mechanical systems with switching”, Automation and Remote Control, 72:6 (2011), 1143–1154 | DOI | MR | Zbl
[13] Aleksandrov A. Yu., Aleksandrova E. B., Zhabko A. P., “Asymptotic stability conditions for certain classes of mechanical systems with time delay”, WSEAS Transactions on Systems and Control, 9 (2014), 388–397 | MR
[14] Aleksandrov A. Y., Aleksandrova E. B., “Asymptotic stability conditions for a class of hybrid mechanical systems with switched nonlinear positional forces”, Nonlinear Dynamics, 83:4 (2016), 2427–2434 | DOI | MR | Zbl
[15] Demidovich B. P., Lectures on the mathematical stability theory, Nauka Publ., M., 1967, 472 pp. (In Russian) | MR
[16] Yoshizawa T., Stability theory by Liapunov's second method, The Math. Soc. of Japan, Tokyo, 1966, 223 pp. | MR
[17] Fadeev S. S., “Ultimate boundedness conditions of solutions of nonlinear mechanical systems with domination of gyroscopic forces”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 4, 74–84 (In Russian)
[18] Zubov V. I., Dynamics of control systems, Saint Petersburg University Publ., Saint Petersburg, 2004, 380 pp. (In Russian)
[19] Bhat S. P., Bernstein D. S., “Geometric homogeneity with applications to finite-time stability”, Mathematics of Control, Signals and Systems, 17 (2005), 101–127 | DOI | MR | Zbl
[20] Polyakov A., Efimov D., Perruquetti W., “Finite-time and fixed-time stabilization: Implicit Lyapunov function approach”, Automatica, 51 (2015), 332–340 | DOI | MR | Zbl
[21] Zubov V. I., Motion stability, Vysshaya shkola Publ., M., 1973, 272 pp. (In Russian)
[22] Rosier L., “Homogeneous Lyapunov function for homogeneous continuous vector field”, Systems Control Letters, 19 (1992), 467–473 | DOI | MR | Zbl
[23] Aleksandrov A. Yu., “On the asymptotic stability of solutions of nonstationary differential equation systems with homogeneous right-hand sides”, Papers of Russian Academy of Sciences, 349:3 (1996), 295–296 (In Russian) | Zbl
[24] Aleksandrov A. Yu., “On the stability of equilibrium of nonstationary systems”, Applied Mathematics and Mechanics, 60:2 (1996), 205–209 (In Russian) | Zbl
[25] Tikhomirov O. G., “Stability of homogeneous systems of ordinary differential equations”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2007, no. 3, 123–130 (In Russian)
[26] Bogoluybov N. N., Mitropol'skii Yu. A., Asymptotic methods in the theory of nonlinear oscillations, Fizmatgiz Publ., M., 1963, 412 pp. (In Russian)
[27] Liberzon D., Morse A. S., “Basic problems in stability and design of switched systems”, IEEE Control Systems Magazine, 19:15 (1999), 59–70 | MR | Zbl
[28] Shorten R., Wirth F., Mason O., Wulf K., King C., “Stability criteria for switched and hybrid systems”, SIAM Rev., 49:4 (2007), 545–592 | DOI | MR | Zbl