Constrained optimality conditions in terms of proper and adjoint coexhausters
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 2, pp. 160-172

Voir la notice de l'article provenant de la source Math-Net.Ru

Coexhasuters are families of convex compact sets allowing one to represent the approximation of the increment of the studied function in the neighborhood of a considered point in the form of MaxMin or MinMax of affine functions. Researchers developed a calculus of these objects, which makes it possible to build thesefamilies for a wide class of nonsmooth functions. They also described unconstrained optimality conditions in terms of coexhausters, which paved the way for the construction of new optimization algorithms. In this paper we derive constrained optimality conditions in terms of coexhausters.
Keywords: nonsmooth analysis, nondifferentiable optimization, coexhausters, optimality conditions.
@article{VSPUI_2019_15_2_a0,
     author = {M. E. Abbasov},
     title = {Constrained optimality conditions in terms of proper and adjoint coexhausters},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {160--172},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a0/}
}
TY  - JOUR
AU  - M. E. Abbasov
TI  - Constrained optimality conditions in terms of proper and adjoint coexhausters
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 160
EP  - 172
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a0/
LA  - ru
ID  - VSPUI_2019_15_2_a0
ER  - 
%0 Journal Article
%A M. E. Abbasov
%T Constrained optimality conditions in terms of proper and adjoint coexhausters
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 160-172
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a0/
%G ru
%F VSPUI_2019_15_2_a0
M. E. Abbasov. Constrained optimality conditions in terms of proper and adjoint coexhausters. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 2, pp. 160-172. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a0/