@article{VSPUI_2019_15_1_a7,
author = {V. V. Provotorov and S. M. Sergeev and A. A. Part},
title = {Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {107--117},
year = {2019},
volume = {15},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a7/}
}
TY - JOUR AU - V. V. Provotorov AU - S. M. Sergeev AU - A. A. Part TI - Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 107 EP - 117 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a7/ LA - en ID - VSPUI_2019_15_1_a7 ER -
%0 Journal Article %A V. V. Provotorov %A S. M. Sergeev %A A. A. Part %T Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 107-117 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a7/ %G en %F VSPUI_2019_15_1_a7
V. V. Provotorov; S. M. Sergeev; A. A. Part. Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 107-117. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a7/
[1] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka Publ., M., 1973, 407 pp. (In Russian) | MR
[2] Provotorov V. V., Volkova A. S., Initial boundary value problems with distributed parameters on the graph, Nauchnay kniga Publ., Voronezh, 2014, 188 pp. (In Russian)
[3] Volkova A. S., Provotorov V. V., “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Russian Mathematics. Proceeding of Higher Educational Institutions, 58:3 (2014), 3–18 (In Russian) | MR | Zbl
[4] Volkova A. S., Gnilitskaya Yu. A., Provotorov V. V., “On the solvability of boundary-value problems for parabolic and hyperbolic equations on geometrical graphs”, Automation and Remote Control, 75:2 (2014), 405–412 | DOI | MR | Zbl
[5] Part A. A., “Solvability of initial-boundary value problem of hyperbolic type with distributed parameters on the graph”, Management systems and information technologies, 3 (2016), 19–23 (In Russian)
[6] Provotorov V. V., “Boundary control of a parabolic system with delay and distributed parameters on the graph”, Intern. conference “Stability and Control Processes” in memory of V. I. Zubov (SCP) (Saint Petersburg, 2015), 126–128
[7] Podvalny S. L., Provotorov V. V., “The questions of controllability of a parabolic systems with distributed parameters on the graph”, Intern. conference “Stability and Control Processes” in memory of V. I. Zubov (SCP) (Saint Petersburg, 2015), 117–119
[8] Provotorov V. V., Provotorova E. N., “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciense. Control Processes, 13:2 (2017), 209–224 (In Russian) | MR
[9] Provotorov V. V., Provotorova E. N., “Optimal control of the linearized Navier—Stokes system in a netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciense. Control Processes, 13:4 (2017), 428–441 (In Russian) | DOI | MR
[10] Provotorov V. V., “Boundary control of a parabolic system with distributed parameters on a graph in the class of summable functions”, Automation and Remote Control, 76:2 (2015), 318–322 | DOI | MR | Zbl
[11] Provotorov V. V., Ryazhskikh V. I., Gnilitskaya Yu. A., “Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike region”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciense. Control Processes, 13:3 (2017), 264–277 | DOI | MR
[12] Karelin V. V., “Penalty functions in the control problem of an observation process”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 4, 109–114 (In Russian)
[13] Veremey E. I., Sotnikova M. V., “Plasma stabilization by prediction with stable linear approximation”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 1, 116–133 (In Russian)
[14] Aleksandrov A. Yu., Zhabko A. P., “On stability of the solutions of a class of nonlinear delay systems”, Automation and Remote Control, 67:9 (2006), 1355–1365 | DOI | MR | Zbl
[15] Sidnenko T. I., Sergeev S. M., “Modeling movements spawned by the demand for the agricultural market in terms of information asymmetry”, Proceedings of Saint Petersburg State Agrarian, 2015, no. 39, 268–270 (In Russian)