Mots-clés : resistance coefficient.
@article{VSPUI_2019_15_1_a6,
author = {V. A. Pavlovsky and A. L. Chistov and D. M. Kuchinsky},
title = {Modeling of pipe flows},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {93--106},
year = {2019},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a6/}
}
TY - JOUR AU - V. A. Pavlovsky AU - A. L. Chistov AU - D. M. Kuchinsky TI - Modeling of pipe flows JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 93 EP - 106 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a6/ LA - ru ID - VSPUI_2019_15_1_a6 ER -
%0 Journal Article %A V. A. Pavlovsky %A A. L. Chistov %A D. M. Kuchinsky %T Modeling of pipe flows %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 93-106 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a6/ %G ru %F VSPUI_2019_15_1_a6
V. A. Pavlovsky; A. L. Chistov; D. M. Kuchinsky. Modeling of pipe flows. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 93-106. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a6/
[1] Lojczyanskij L. G., Fluid and gas mechanics, Drofa Publ, Moscow, 2003, 840 pp. (In Russian)
[2] Schlichting H., Grenzschicht Theorie [Boundary layer theory], Verlag G. Braun Publ., Berlin, 1965, 736 pp. | MR
[3] Pavlovskij V. A., Nikushhenko D. V., Computational Fluid Dynamics. Theoretical fundamentals, Lan' Publ., Saint Petersburg, 2018, 368 pp. (In Russian)
[4] Robertson J. M., Martin J. D., Burkhurt T. H., “Turbulent flow in rough pipes”, Ind. Eng. Chem. Fundam, 1963, no. 7, 253–265
[5] Jimenz J., “Turbulent flow over rough walls”, Annu. Rev. Fluid Mech., 2004, no. 36, 173–196 | DOI | MR
[6] Sedova O., Pronina Y., “A new model for the mechanochemical corrosion of a thin spherical shell”, EPJ Web of Conferences, 108 (2016), 02040, 6 pp. | DOI | MR
[7] Patel V. C., “Perspective: flow at high Reynolds number and over rough surfaces — Achilles heel of CFD”, J. Fluids Eng., 120 (1998), 434–444 | DOI
[8] Moody L. F., “Friction factors for pipe flow”, Trans. ASME, 66, November (1944), 671–684
[9] Tullis J. P., Wang J.-S., “Turbulent flow in the entry region of a rough pipe”, ASME J. Fluids Eng., 75 (1974), 62–68
[10] Pavlovskij V. A., “About a phenomenological alternative to the mixing length hypothesis”, Models of continuum mechanics, Physical mechanics digest. release, 7, ed. B. V. Filippov, Saint Petersburg State University Publ., Saint Petersburg, 1998, 21–35 (In Russian)
[11] Pavlovskij V. A., “Accounting for wall roughness for a unified phenomenological model of viscous fluid flow at arbitrary Reynolds numbers”, Problems of saving fuel and energy resources in enterprises and thermal power plants: an intercollege digest of scientific papers, SPb GTU RP Publ., Saint Petersburg, 2002, 11–17 (In Russian)
[12] Nikuradze J., “Strömungsgesetze in rauhen Rohren”, VDI-Forschungsheft, Ausgabe B, 361:4, July/August (1933), 1–22
[13] Korotkin A. I., Rogovoj Yu. A., Calculation method for longitudinal average velocities of near-wall turbulent incompressible fluid flows, MorVest Publ., Saint Petersburg, 2009, 121 pp. (In Russian)