Modeling of pipe flows
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 93-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lots of technical devices use flows in pipes and channels caused by pressure drop, along with one's axis, which is energy consuming and has to be estimated. For the estimation resistant coefficient, dependent on flow regime and streamlined surface roughness, is required. Turbulence $f$-model applicable for calculation for both laminar and turbulent flow and smooth and rough walls is used for investigation. The problem of incompressible viscous liquid steady flow in a smooth round pipe is considered for different Reynolds numbers. First integrals for velocity profile and turbulence measure are obtained in form of transcendental equations and solved by Newton's method for algebraic equation system. Calculated results are compared with data from alternative theoretical approaches and experiments.
Keywords: pipe flow, viscosity, $f$-model of turbulence, Reynolds number, pressure difference, differential equations, boundary conditions, velocity profile
Mots-clés : resistance coefficient.
@article{VSPUI_2019_15_1_a6,
     author = {V. A. Pavlovsky and A. L. Chistov and D. M. Kuchinsky},
     title = {Modeling of pipe flows},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {93--106},
     year = {2019},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a6/}
}
TY  - JOUR
AU  - V. A. Pavlovsky
AU  - A. L. Chistov
AU  - D. M. Kuchinsky
TI  - Modeling of pipe flows
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 93
EP  - 106
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a6/
LA  - ru
ID  - VSPUI_2019_15_1_a6
ER  - 
%0 Journal Article
%A V. A. Pavlovsky
%A A. L. Chistov
%A D. M. Kuchinsky
%T Modeling of pipe flows
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 93-106
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a6/
%G ru
%F VSPUI_2019_15_1_a6
V. A. Pavlovsky; A. L. Chistov; D. M. Kuchinsky. Modeling of pipe flows. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 93-106. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a6/

[1] Lojczyanskij L. G., Fluid and gas mechanics, Drofa Publ, Moscow, 2003, 840 pp. (In Russian)

[2] Schlichting H., Grenzschicht Theorie [Boundary layer theory], Verlag G. Braun Publ., Berlin, 1965, 736 pp. | MR

[3] Pavlovskij V. A., Nikushhenko D. V., Computational Fluid Dynamics. Theoretical fundamentals, Lan' Publ., Saint Petersburg, 2018, 368 pp. (In Russian)

[4] Robertson J. M., Martin J. D., Burkhurt T. H., “Turbulent flow in rough pipes”, Ind. Eng. Chem. Fundam, 1963, no. 7, 253–265

[5] Jimenz J., “Turbulent flow over rough walls”, Annu. Rev. Fluid Mech., 2004, no. 36, 173–196 | DOI | MR

[6] Sedova O., Pronina Y., “A new model for the mechanochemical corrosion of a thin spherical shell”, EPJ Web of Conferences, 108 (2016), 02040, 6 pp. | DOI | MR

[7] Patel V. C., “Perspective: flow at high Reynolds number and over rough surfaces — Achilles heel of CFD”, J. Fluids Eng., 120 (1998), 434–444 | DOI

[8] Moody L. F., “Friction factors for pipe flow”, Trans. ASME, 66, November (1944), 671–684

[9] Tullis J. P., Wang J.-S., “Turbulent flow in the entry region of a rough pipe”, ASME J. Fluids Eng., 75 (1974), 62–68

[10] Pavlovskij V. A., “About a phenomenological alternative to the mixing length hypothesis”, Models of continuum mechanics, Physical mechanics digest. release, 7, ed. B. V. Filippov, Saint Petersburg State University Publ., Saint Petersburg, 1998, 21–35 (In Russian)

[11] Pavlovskij V. A., “Accounting for wall roughness for a unified phenomenological model of viscous fluid flow at arbitrary Reynolds numbers”, Problems of saving fuel and energy resources in enterprises and thermal power plants: an intercollege digest of scientific papers, SPb GTU RP Publ., Saint Petersburg, 2002, 11–17 (In Russian)

[12] Nikuradze J., “Strömungsgesetze in rauhen Rohren”, VDI-Forschungsheft, Ausgabe B, 361:4, July/August (1933), 1–22

[13] Korotkin A. I., Rogovoj Yu. A., Calculation method for longitudinal average velocities of near-wall turbulent incompressible fluid flows, MorVest Publ., Saint Petersburg, 2009, 121 pp. (In Russian)