Mots-clés : Markov moment.
@article{VSPUI_2019_15_1_a5,
author = {A. V. Orekhov},
title = {Markov moment for the agglomerative method of clustering in {Euclidean} space},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {76--92},
year = {2019},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a5/}
}
TY - JOUR AU - A. V. Orekhov TI - Markov moment for the agglomerative method of clustering in Euclidean space JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 76 EP - 92 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a5/ LA - ru ID - VSPUI_2019_15_1_a5 ER -
%0 Journal Article %A A. V. Orekhov %T Markov moment for the agglomerative method of clustering in Euclidean space %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 76-92 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a5/ %G ru %F VSPUI_2019_15_1_a5
A. V. Orekhov. Markov moment for the agglomerative method of clustering in Euclidean space. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 76-92. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a5/
[1] Everitt B. S., Cluster analysis, John Wiley Sons Ltd, Chichester, West Sussex, UK, 2011, 330 pp. | MR | Zbl
[2] Duda R. O., Hart P. E., Stork D. G., Pattern classification, 2nd ed., Wiley, New York–Chichester, 2001, 654 pp. | MR | Zbl
[3] Calirnski T., Harabasz J., “A dendrite method for cluster analysis”, Communications in Statistics, 1974, no. 3, 1–27 | MR
[4] Baxter M. J., Exploratory multivariate analysis in archaeology, Edinburgh University Press, Edinburgh, 1994, 307 pp.
[5] Sugar C. A., James G. M., “Finding the number of clusters in a dataset”, Journal of the American Statistical Association, 98:463 (2003), 750–763 | DOI | MR | Zbl
[6] Granichin O. N., Shalymov D. S., Avros R., Volkovich Z., “A randomized algorithm for estimating the number of clusters”, Automation and Remote Control, 2011, no. 4, 86–98 (In Russian) | MR | Zbl
[7] Shalymov D. S., “Randomized method for determining the number of clusters on a data set”, Scientific and Technical Gazette of Saint Petersburg State University of Information Technologies, Mechanics and Optics, 2009, no. 5(63), 111–116 (In Russian)
[8] Zhang G., Zhang C., Zhang H., “Improved $K$-means algorithm based on density Canopy”, Knowledge-Based Systems, 145 (2018), 1–14 | DOI
[9] Jiali W., Yue Z., Xv L., “Automatic cluster number selection by finding density peaks”, 2016 2nd IEEE Intern. Conference on Computer and Communications (ICCC), IEEE Proceedings (Chengdu, China, 2016), 13–18 | DOI
[10] Cordeiro de Amorim R., Hennig C., “Recovering the number of clusters in data sets with noise features using feature rescaling factors”, Information Sciences, 324 (2015), 126–145 | DOI | MR
[11] Lozkins A., Bure V. M., “A probabilistic approach to determining the locally optimal number of clusters”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:1 (2016), 28–37 (In Russian) | MR
[12] Shalymov D. S., “Algorithms for stable clustering based on index functions and stability functions”, Stochastic optimization in computer science, 4:1-1 (2008), 236–248 (In Russian)
[13] Steinhaus H., “Sur la division des corps materiels en parties”, Bull. Acad. Polon. Sci. Cl. III, IV (1956), 801–804 | MR
[14] Lloyd S., “Least squares quantization in PCM”, IEEE Transactions on Information Theory, 28:2 (1982), 129–137 | DOI | MR | Zbl
[15] Hartigan J. A., Clustering algorithms, John Wiley Sons Inc., New York–London–Sydney–Toronto, 1975, 351 pp. | MR | Zbl
[16] Aldenderfer M. S., Blashfield R. K., Cluster analysis, Sage Publications Inc., Newburg Park, 1984, 88 pp.
[17] Wald A., Sequential analysis, John Wiley Sons Inc., New York, 1947, 212 pp. | MR
[18] Sirjaev A. N., Statistical sequential analysis: Optimal stopping rules, American Mathematical Society, New York, 1973, 174 pp. | MR | Zbl
[19] Shiryaev A. N., Optimal stopping rules, Springer, Berlin–Heidelberg, 2009, 220 pp. | MR
[20] Orekhov A. V., “Criterion for estimation of stress-deformed state of SD-materials”, AIP Conference Proceedings, 1959, 2018, 070028 pp. | DOI
[21] Orekhov A. V., “Approximation-evaluation tests for a stress-strain state of deformable solids”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:3 (2018), 230–242 (In Russian) | DOI | MR
[22] McCaffrey J., “Test run — $k$-means++ data clustering”, MSDN Magazine, 30:8 (2015), 62–68
[23] Zurochka A. V., Khaydukov S. V., Kudryavtsev I. V., Chereshnev V. A., Flow cytometry in medicine and biology, 2nd ed., Ural Branch of the Russian Academy of Sciences Publ., Yekaterinburg, 2014, 574 pp. (In Russian)
[24] Lappin S., Fox C., The handbook of contemporary semantic theory, 2nd ed., Wiley-Blackwell, 2015, 776 pp.