Analysis of the dynamics of charged particles in an ideal Penning trap with a rotating field and a buffer gas
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 62-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with particle dynamics in a Penning trap with a rotating electric dipole field and a buffer gas. Electromagnetic traps are widely used for the accumulation and storage of charged particles of matter and antimatter for further use in various experiments. In this paper, a general analytical criterion is established, which must satisfy the parameters of the type of trap under investigation in order to provide compression or expansion modes of the trajectory beam. These modes correspond to the cases of asymptotic stability or instability of the system under study. The most effective combinations of parameters were determined, providing the maximum possible degree of stability (or, accordingly, instability) of the system with the minimum possible amplitudes of the rotating electric field. Analytical solutions are constructed for the rapid calculation and analysis of the behavior of individual particles or envelopes of an ellipsoidal beam of trajectories and an estimate of the radius of the accumulated cloud. The proposed approach is applicable to the analysis of the system for any values of the parameters of the studied model of particle dynamics in a trap.
Keywords: Penning trap, Rotating Wall, Penning—Malmberg—Surko trap, charged particle dynamics, stability.
@article{VSPUI_2019_15_1_a4,
     author = {A. D. Ovsyannikov},
     title = {Analysis of the dynamics of charged particles in an ideal {Penning} trap with a rotating field and a buffer gas},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {62--75},
     year = {2019},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a4/}
}
TY  - JOUR
AU  - A. D. Ovsyannikov
TI  - Analysis of the dynamics of charged particles in an ideal Penning trap with a rotating field and a buffer gas
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 62
EP  - 75
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a4/
LA  - ru
ID  - VSPUI_2019_15_1_a4
ER  - 
%0 Journal Article
%A A. D. Ovsyannikov
%T Analysis of the dynamics of charged particles in an ideal Penning trap with a rotating field and a buffer gas
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 62-75
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a4/
%G ru
%F VSPUI_2019_15_1_a4
A. D. Ovsyannikov. Analysis of the dynamics of charged particles in an ideal Penning trap with a rotating field and a buffer gas. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 62-75. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a4/

[1] Isaac C. A., Baker C. J., Mortensen T., van der Werf D. P., Charlton M., “Compression of positron clouds in the independent particle regime”, Physical Review Letters, 107 (2011), 033201, 4 pp. | DOI

[2] Isaac C. A., “Motional sideband excitation using rotating electric fields”, Physical Review A, 87 (2013), 043415, 7 pp. | DOI

[3] Eseev M. K., Meshkov I. N., “Traps for storing charged particles and antiparticles in high precision experiments”, Phys. Usp., 59 (2016), 304–317 | DOI

[4] Meshkov I. N., Eseev M. K., Ovsyannikov A. D., Ovsyannikov D. A., Ponomarev V. A., “Analysis of the particle dynamics stability in the Penning—Malmberg—Surko trap”, Proc. XXV Russian Particle Accelerator Conference, Saint Petersburg, 2016, 6 pp. | DOI | MR

[5] Meshkov I. N., Ovsyannikov A. D., Ovsyannikov D. A., Eseev M. K., “Study of the stability of charged particle dynamics in a Penning—Malmberg—Surko trap with a rotating field”, Papers of Academy of Science RAN, 476:6 (2017), 630–634 | DOI | MR