Sensitivity analysis of the gas transmission offshore pipeline model to variations of the model parameters
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 47-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Basic approaches to defining the coefficient of hydraulic resistance and the total heat transfer coefficient between the gas and the ambient in the model of an unsteady nonisothermal gas flow through an offshore gas-pipelines are considered. Model sensitivity to variations of these coefficients is illustrated by the charts, demonstrating influence of these coefficients on the basic flow characteristics. The coefficient of hydraulic resistance and the heat transfer coefficient calculations for one from test variant of gas transmission are given. The calculation method of these parameters from the experimental date, enabling to provide the validity of model of the unsteady nonisothermal gas flow through a sea gas pipeline when calculating certain pipeline is suggested.
Keywords: offshore gas-pipelines, dynamic of glaciation, nonstationary flow, identification of friction factors and of sensitivity analysis of the gas transmission offshore pipeline model to variations of the model parameters, sensitivity analysis of the model.
Mots-clés : gas transmission
@article{VSPUI_2019_15_1_a3,
     author = {G. I. Kurbatova and N. N. Ermolaeva},
     title = {Sensitivity analysis of the gas transmission offshore pipeline model to variations of the model parameters},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {47--61},
     year = {2019},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a3/}
}
TY  - JOUR
AU  - G. I. Kurbatova
AU  - N. N. Ermolaeva
TI  - Sensitivity analysis of the gas transmission offshore pipeline model to variations of the model parameters
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 47
EP  - 61
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a3/
LA  - ru
ID  - VSPUI_2019_15_1_a3
ER  - 
%0 Journal Article
%A G. I. Kurbatova
%A N. N. Ermolaeva
%T Sensitivity analysis of the gas transmission offshore pipeline model to variations of the model parameters
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 47-61
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a3/
%G ru
%F VSPUI_2019_15_1_a3
G. I. Kurbatova; N. N. Ermolaeva. Sensitivity analysis of the gas transmission offshore pipeline model to variations of the model parameters. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a3/

[1] Kurbatova G. I., Ermolaeva N. N., “Quasi one-dimensional non-stationary model of the processes in the sea gas pipelines”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer science. Control processes, 2015, no. 3, 55–66 (In Russian)

[2] Kurbatova G. I., Ermolaeva N. N., “The mathematical models of gas transmission at hyper-pressure”, Applied Mathematical Sciences, 8:124 (2014), 6191–6203 | DOI

[3] Ermolaeva N. N., “Computer modelling of the sea gas-pipeline glaciation and of the flow characteristics behavior in unsteady regimes”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer science. Control processes, 2016, no. 4, 75–85 | MR

[4] Kurbatova G. I., Popova E. A., Filippov B. V. at al., Models of sea gas-pipelines, Saint Petersburg University Publ., Saint Petersburg, 2005, 156 pp. (In Russian)

[5] Ermolaeva N. N., Kurbatova G. I., Klemeshev V. A., Certificate of Official Registration of Computer Programs N 2017610826 “The program for calculating the flow characteristics of unsteady flows of a multicomponent gas mixture through the offshore gas pipelines in the northern seas” (SGPITM), Date of receipt: 31.01.2017. Date of state registration in the Register of computer programs: 23.03.2017 (In Russian)

[6] Ermolaeva N. N., Kurbatova G. I., Klemeshev V. A., Certificate of Official Registration of Computer Programs N 2017610817 “The program for calculating the characteristics of steady-state flows of a multicomponent mixture of gases in offshore gas pipelines at ultrahigh pressures, taking into account the route relief” (SGTM), Date of receipt: 31.01.2017. Date of state registration in the Register of computer programs: 23.03.2017 (In Russian)

[7] Ermolaeva N. N., Kurbatova G. I.,Klemeshev V. A., Mikova V. V., Certificate of Official Registration of Computer Programs N 2017610801 “The program for calculating the dynamics of sea ice growth on flat and cylindrical multilayer surfaces in the northern seas” (LED), Date of receipt: 31.01.2017. Date of state registration in the Register of computer programs: 23.03.2017 (In Russian)

[8] Ermolaeva N. N., “Non-stationary models of the heat exchange and the gas transportation through a sea gas pipeline”, Trudi Karel. nauch. centra RAN. Seria Matematicheskoje modelirivanie i informacionnie tehnologii, 2016, no. 8, 3–10 (In Russian)

[9] Kurbatova G. I., Ermolaeva N. N., “The models of heat transfer in a sea gas-pipeline at the glaciation”, 2015 Intern. Conference on Mechanics — Seventh Polyakhov's Reading, 2015, 1–3

[10] Reid R. C., Prausnitz J. M., Sherwood Th. K., The properties of gases and liquids, MeGraw-Hill Book Company Publ., New York–St. Louis–San Francisco, 1977, 560 pp.

[11] Haaland S., “Simple and explicit formulas for the friction factor in turbulent pipe flow”, J. Fluids Engineering, 105 (1983), 89–90 | DOI

[12] STO Gasprom 2-3.5-051-2006. Standards of technological design of gas pipelines. Vved. 2006-07-03, ZAO Izd. Dom “Poligrafiya”, M., 2006, 196 pp. (In Russian)

[13] Lee A. L., Gonzalez M. H., Eakin B. E., “The viscosity of natural gases”, Journal of Petroleum Technology, 18:8 (1966), 997–1000 | DOI

[14] Schlichting H., Boundary-layer theory, McGraw-Hill Publ., New York, 1955, 535 pp. | MR

[15] Kanibolotskiy M. A., Babe G. D., Bondarev E. A., Voyevodin A. F., Identification of hydraulic models, Nauka Publ., Novosibirsk, 1980, 160 pp. (In Russian)

[16] Kanibolotskiy M. A., Vasil'yev O. F., Bondarev E. A., Voyevodin A. F., Non-isothermal flow of gas in the pipes, Nauka Publ., Novosibirsk, 1978, 128 pp. (In Russian)

[17] Kurbatova G. I., Ermolaeva N. N., “Parametric identification of a model of steady non-isothermal gas flow through a sea gas pipeline”, Marine intellectual technology, 1:1 (2017), 8–14 (In Russian) | MR

[18] Ermolaeva N. N., Kurbatova G. I., Klemeshev V. A., Certificate of Official Registration of Computer Programs no. 2017613635 “Program for identifying the parameters of a mathematical model of a multicomponent gas mixture flow in long offshore gas pipelines” (PIGTM), Date of receipt: 31.01.2017. Date of state registration in the Register of computer programs: 23.03.2017 (In Russian)

[19] Ermolaeva N. N., “Investigation of the influence of gas transmission parameters on flow characteristics”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer science. Control processes, 2016, no. 3, 53–61 | MR

[20] Bellman R. E., Kalaba R. E., Quasilinearization and nonlinear boundary-value problems, American Elsevier Publ. Comp., New York, 1965, 218 pp. | MR