Mots-clés : data transmission
@article{VSPUI_2019_15_1_a2,
author = {V. M. Bure and E. M. Parilina},
title = {Stochastic game of~data transmission in~the presence of~buffers of~finite capacity},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {39--46},
year = {2019},
volume = {15},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a2/}
}
TY - JOUR AU - V. M. Bure AU - E. M. Parilina TI - Stochastic game of data transmission in the presence of buffers of finite capacity JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 39 EP - 46 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a2/ LA - en ID - VSPUI_2019_15_1_a2 ER -
%0 Journal Article %A V. M. Bure %A E. M. Parilina %T Stochastic game of data transmission in the presence of buffers of finite capacity %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 39-46 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a2/ %G en %F VSPUI_2019_15_1_a2
V. M. Bure; E. M. Parilina. Stochastic game of data transmission in the presence of buffers of finite capacity. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a2/
[1] Altman E., Barman D., El Azouzi R., Jimenez T., “A game theoretic approach for delay minimization in slotted ALOHA”, IEEE Intern. Conference on Communications, IEEE Cat. CH37577, v. 7, 2004, 3999–4003
[2] Marbán S., van de Ven P., Borm P., Hamers H., “ALOHA networks: a game-theoretic approach”, Math. Meth. Oper. Res., 78:2 (2013), 221–24 | DOI | MR
[3] Sagduyu Y. E., Ephremides A., “A game-theoretic look at simple relay channel”, Wireless Networks, 12:5 (2006), 545–560 | DOI
[4] Bure V. M., Parilina E. M., “Stochastic models of data transmission in networks with different topologies”, Large-Scale Systems Control, 68 (2017), 6–29 (In Russian) | MR
[5] Bure V. M., Parilina E. M., “Multiple access game with imperfect information”, Mathematical Game Theory and Applications, 9:4 (2017), 3–17 (In Russian) | MR | Zbl
[6] Inaltekin H., Wicker S. B., “The analysis of Nash equilibria of the one-shot random-access game for wireless networks and the behavior of selfish nodes”, IEEE/ACM Transactions on Networking, 16:5 (2008), 1094–1107 | DOI
[7] Afghah F., Razi A., Abedi A., “Stochastic game theoretical model for packet forwarding in relay network”, Telecommunication Systems, 52:4 (2013), 1877–1893 | DOI
[8] Fink A. M., “Equilibrium in a stochastic $n$-person game”, J. Sci. Hirosima Univ. Series A-I, 28 (1964), 89–93 | MR | Zbl
[9] Koutsoupias E., Papadimitriou C., “Worst-case equilibria”, Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, 1999, 404–413 | MR | Zbl
[10] Herings P. J.-J., Peeters R. Homotopy methods to compute equilibria in game theory, Econ. Theory, 42 (2010), 119–156 | DOI | MR | Zbl
[11] Lemke C. E., Howson J. T., “Equilibrium points of bimatrix games”, J. Soc. Indust. Appl. Math., 12 (1964), 413–423 | DOI | MR | Zbl
[12] Raghavan T. E. S., Filar J. A., “Algorithms for stochastic games — a survey”, ZOR — Methods and Models of Operations Research, 35 (1991), 437–472 | DOI | MR | Zbl