Stochastic game of data transmission in the presence of buffers of finite capacity
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 39-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The game-theoretic model of data transmission in a network of a given topology is presented. Two players (network nodes) tend to send as many random data packagesas possible to the final nodes through one common node. Each playerhas a finite capacity buffer for storing data packages. A system of costs for sending and storing data packages andrewards for the successful package delivery is introduced. A dynamic conflict-controlled process is modelled as a stochastic gamewith a finite set of states. The existence of the Nash equilibrium and a cooperative solution is proved. The cooperative solution is a strategy profile which maximizes the total expected payoff. The price of anarchy in the network is calculated. The price comparesthe players' payoffs in the Nash equilibrium and cooperative solution.
Keywords: slotted ALOHA, the price of anarchy, stochastic game.
Mots-clés : data transmission
@article{VSPUI_2019_15_1_a2,
     author = {V. M. Bure and E. M. Parilina},
     title = {Stochastic game of~data transmission in~the presence of~buffers of~finite capacity},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {39--46},
     year = {2019},
     volume = {15},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a2/}
}
TY  - JOUR
AU  - V. M. Bure
AU  - E. M. Parilina
TI  - Stochastic game of data transmission in the presence of buffers of finite capacity
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 39
EP  - 46
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a2/
LA  - en
ID  - VSPUI_2019_15_1_a2
ER  - 
%0 Journal Article
%A V. M. Bure
%A E. M. Parilina
%T Stochastic game of data transmission in the presence of buffers of finite capacity
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 39-46
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a2/
%G en
%F VSPUI_2019_15_1_a2
V. M. Bure; E. M. Parilina. Stochastic game of data transmission in the presence of buffers of finite capacity. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a2/

[1] Altman E., Barman D., El Azouzi R., Jimenez T., “A game theoretic approach for delay minimization in slotted ALOHA”, IEEE Intern. Conference on Communications, IEEE Cat. CH37577, v. 7, 2004, 3999–4003

[2] Marbán S., van de Ven P., Borm P., Hamers H., “ALOHA networks: a game-theoretic approach”, Math. Meth. Oper. Res., 78:2 (2013), 221–24 | DOI | MR

[3] Sagduyu Y. E., Ephremides A., “A game-theoretic look at simple relay channel”, Wireless Networks, 12:5 (2006), 545–560 | DOI

[4] Bure V. M., Parilina E. M., “Stochastic models of data transmission in networks with different topologies”, Large-Scale Systems Control, 68 (2017), 6–29 (In Russian) | MR

[5] Bure V. M., Parilina E. M., “Multiple access game with imperfect information”, Mathematical Game Theory and Applications, 9:4 (2017), 3–17 (In Russian) | MR | Zbl

[6] Inaltekin H., Wicker S. B., “The analysis of Nash equilibria of the one-shot random-access game for wireless networks and the behavior of selfish nodes”, IEEE/ACM Transactions on Networking, 16:5 (2008), 1094–1107 | DOI

[7] Afghah F., Razi A., Abedi A., “Stochastic game theoretical model for packet forwarding in relay network”, Telecommunication Systems, 52:4 (2013), 1877–1893 | DOI

[8] Fink A. M., “Equilibrium in a stochastic $n$-person game”, J. Sci. Hirosima Univ. Series A-I, 28 (1964), 89–93 | MR | Zbl

[9] Koutsoupias E., Papadimitriou C., “Worst-case equilibria”, Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, 1999, 404–413 | MR | Zbl

[10] Herings P. J.-J., Peeters R. Homotopy methods to compute equilibria in game theory, Econ. Theory, 42 (2010), 119–156 | DOI | MR | Zbl

[11] Lemke C. E., Howson J. T., “Equilibrium points of bimatrix games”, J. Soc. Indust. Appl. Math., 12 (1964), 413–423 | DOI | MR | Zbl

[12] Raghavan T. E. S., Filar J. A., “Algorithms for stochastic games — a survey”, ZOR — Methods and Models of Operations Research, 35 (1991), 437–472 | DOI | MR | Zbl