Magnetic model MMTC-2.2 of ITER tokamak complex
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 5-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stray poloidal magnetic field produced in ITER outside the tokamak is significantly higher than in any present machines. This magnetic field magnetizes the steel rebar reinforcing the building concrete structures enclosing the tokamak. As a result, reinforced structures of the ITER building may produce a substantial magnetic field with the axisymmetric component (toroidal mode number $n = 0$) affecting the plasma initiation and non-axisymmetric components (“error fields” with $n = 1; 2$) deteriorating plasma performance. This paper presents an upgraded Magnetic Model of the ITER Tokamak Complex, MMTC-2.2, for assessment of the stray field associated with the reinforced structures. This magnetic model MMTC-2.2 takes into account the CATIA models of the Tokamak Complex Buildings and volumetric fractions of steel for the rebar in the building structures as they were in the design in 2016.
Keywords: stray magnetic fields, error fields, steel magnetization.
Mots-clés : ITER
@article{VSPUI_2019_15_1_a0,
     author = {V. M. Amoskov and A. V. Belov and V. A. Belyakov and E. I. Gapionok and Yu. V. Gribov and V. P. Kukhtin and E. A. Lamzin and Y. Mita and A. D. Ovsyannikov and D. A. Ovsyannikov and L. Patisson and S. E. Sychevsky and S. V. Zavadskiy},
     title = {Magnetic model {MMTC-2.2} of {ITER} tokamak complex},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {5--21},
     year = {2019},
     volume = {15},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a0/}
}
TY  - JOUR
AU  - V. M. Amoskov
AU  - A. V. Belov
AU  - V. A. Belyakov
AU  - E. I. Gapionok
AU  - Yu. V. Gribov
AU  - V. P. Kukhtin
AU  - E. A. Lamzin
AU  - Y. Mita
AU  - A. D. Ovsyannikov
AU  - D. A. Ovsyannikov
AU  - L. Patisson
AU  - S. E. Sychevsky
AU  - S. V. Zavadskiy
TI  - Magnetic model MMTC-2.2 of ITER tokamak complex
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 5
EP  - 21
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a0/
LA  - en
ID  - VSPUI_2019_15_1_a0
ER  - 
%0 Journal Article
%A V. M. Amoskov
%A A. V. Belov
%A V. A. Belyakov
%A E. I. Gapionok
%A Yu. V. Gribov
%A V. P. Kukhtin
%A E. A. Lamzin
%A Y. Mita
%A A. D. Ovsyannikov
%A D. A. Ovsyannikov
%A L. Patisson
%A S. E. Sychevsky
%A S. V. Zavadskiy
%T Magnetic model MMTC-2.2 of ITER tokamak complex
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 5-21
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a0/
%G en
%F VSPUI_2019_15_1_a0
V. M. Amoskov; A. V. Belov; V. A. Belyakov; E. I. Gapionok; Yu. V. Gribov; V. P. Kukhtin; E. A. Lamzin; Y. Mita; A. D. Ovsyannikov; D. A. Ovsyannikov; L. Patisson; S. E. Sychevsky; S. V. Zavadskiy. Magnetic model MMTC-2.2 of ITER tokamak complex. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_1_a0/

[1] ITER Tokamak Complex, (accessed: 09.02.2018) http://www.iter.org

[2] Cordier J.-J., Bak J.-S., Baudry A., Benchikhoune M., Carafa L., Chiocchio S., Darbour R., Elbez J., di Giuseppe G., Iwata Y., Jeannoutot T., Kotamaki M., Kuehn I., Lee A., Levesy B., Orlandi S., Packer R., Patisson L., Reich J., Rigoni G., Sweeney S., “Overview of the ITER Tokamak Complex building and integration of plant systems toward construction”, Fusion Eng. Des., 90 (2015), 240–243 | DOI

[3] Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S., “Assessment of error field from ferromagnetic surrounding of ITER tokamak: ferromagnetic rebar of Tokamak Complex building”, Plasma Devices Oper., 16:4 (2008), 225–23 | DOI

[4] Amoskov V., Belov A., Belyakov V., Gribov Y., Kavin A., Kukhtin V., Lamzin E., Lobanov K., Maximenkova N., Mineev A., Sytchevsky S., “Stray magnetic field at plasma initiation produced by ferromagnetic elements of the ITER Tokamak Complex”, Plasma Devices Oper., 17:4 (2009), 238–249 | DOI

[5] Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S., “Stray magnetic field produced by ITER Tokamak Complex”, Plasma Devices Oper., 17:4 (2009), 230–237 | DOI

[6] CATIA CAD/CAM multi-platform, (accessed: 09.02.2018) https://www.3ds.com/products-services/catia/

[7] Amoskov V., Belov A., Kashikhin V., Kukhtin V., Lamzin E., Severgin Yu., Shatil N., Sytchevsky S., “Numerical simulation of 3D field of system using permanent magnets”, Proc. of Eur. Part. Accelerator Conference (Barcelona, Spain, 1996), 2161–2164

[8] Amoskov V. M., Belov A. V., Belyakov V. A., Belyakova T. F., Gribov Yu. A., Kukhtin V. P., Lamzin E. A., Sytchevsky S. E., “Computation technology based on KOMPOT and KLONDIKE codes for magnetostatic simulations in tokamaks”, Plasma Devices Oper., 16 (2008), 89–103 | DOI

[9] Tozoni O. V., Meyergoiz I. D, Computation of spatial electromagnetic fields, Tekhnika Publ., Kiev, 1974, 352 pp. (In Russian)

[10] Akishin P. G., Sapozhnikov A. A., “The volume integral equations method in magnetostatics problems”, Vestnik of RUDN, 2014, no. 2, 310–315 (In Russian)

[11] Akishin P. G., Vorozhtsov S. B., Zhidkov E. P., “Calculation of the magnetic field of the isochronous cyclotron sector magnet by the integral equations method”, Proc. of COMPUMAG Conference (Grenoble, 1978), JUNR-E9-11859 | MR

[12] Tamm I., Fundamentals of the theory of electricity, Mir Publ., M., 1979, 695 pp.

[13] Thome R. J., Tarrh J. M., MHD and fusion magnets: field and force design concepts, Wiley Publ., New York, 1982, 249 pp.

[14] Kurbatov P. A., Arinchin S. A., Numerical calculation of electromagnetic fields, Energoatomizdat Publ., M., 1984, 168 pp. (In Russian) | MR

[15] Samarsky A. A., Nikolaev E. S., Solution methods of finite-difference equations, Nauka Publ., M., 1978, 592 pp. (In Russian) | MR

[16] Fadeev D. K., Fadeeva V. N., Computation methods of linear algebra, Fizmatgiz Publ., M., 1963, 734 pp. (In Russian) | MR

[17] Amoskov V. M., Bazarov A. M., Belyakov V. A., Gapionok E. I., Kaparkova M. V., Kukhtin V. P., Lamzin E. A., Lyublin B. V., Sytchevsky S. E., “Modelling of magnetic field perturbations in electrophysical devices due to the steel reinforcement of buildings”, Technical Physics, 62:10 (2017), 1466–1472 | DOI

[18] Amoskov V., Bazarov A., Belyakov V., Gapionok E., Gribov Y., Kaparkova M., Kukhtin V., Lamzin E., Lyublin B., Ovsyannikov D., Sytchevsky S., “Calculation of magnetic field from steel rebar of building with machine producing high stray field”, Fusion Eng. Des., 135 (2018), 165–173 | DOI

[19] Amoskov V., Bazarov A., Kaparkova M., Kukhtin V., Lamzin E., Lyublin B., Belyakov V., Sytchevsky S., Gribov Y., “Modeling magnetic effects of steel rebar of concrete surroundings for electrophysical apparatus”, Proceeding of RuPAC, 2016, THPSC007, 553–555

[20] El-Sherbiny M., “Representation of the magnetization characteristic by a sum of exponentials”, IEEE Transactions on Magnetics, 9:1 (1973), 60–61 | DOI

[21] Multiobjective optimization library, (accessed: 09.02.2018) http://home.ku.edu.tr/m̃oolibrary/