@article{VSPUI_2018_14_4_a9,
author = {A. O. Zakharov and Yu. V. Kovalenko},
title = {Construction and reduction of the {Pareto} set in asymmetric travelling salesman problem with two criteria},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {378--392},
year = {2018},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a9/}
}
TY - JOUR AU - A. O. Zakharov AU - Yu. V. Kovalenko TI - Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 378 EP - 392 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a9/ LA - en ID - VSPUI_2018_14_4_a9 ER -
%0 Journal Article %A A. O. Zakharov %A Yu. V. Kovalenko %T Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 378-392 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a9/ %G en %F VSPUI_2018_14_4_a9
A. O. Zakharov; Yu. V. Kovalenko. Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 4, pp. 378-392. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a9/
[1] Ausiello G., Crescenzi P., Gambosi G., Kann V., Marchetti-Spaccamela A., Protasi M., Complexity and approximation, Springer-Verlag Publ., Berlin–Heidelberg, 1999, 524 pp. | MR | Zbl
[2] Ehrgott M., Multicriteria optimization, Springer-Verlag Publ., Berlin–Heidelberg, 2005, 323 pp. | MR | Zbl
[3] Podinovskiy V. V., Noghin V. D., Pareto-optimal solutions of multicriteria problems, Fizmatlit Publ., M., 2007, 256 pp. (In Russian) | MR
[4] Figueira J. L., Greco S., Ehrgott M., Multiple criteria decision analysis: state of the art surveys, Springer-Verlag Publ., New York, 2005, 1048 pp. | MR | Zbl
[5] Noghin V. D., Reduction of the Pareto Set: An axiomatic approach, Springer Intern. Publ., Cham, 2018, 232 pp.
[6] Klimova O. N., “The problem of the choice of optimal chemical composition of shipbuilding steel”, Journal of Computer and Systems Sciences International, 46:6 (2007), 903–907 | DOI | Zbl
[7] Noghin V. D., Prasolov A. V., “The quantitative analysis of trade policy: a strategy in global competitive conflict”, Intern. Journal of Business Continuity and Risk Management, 2:2 (2011), 167–182 | DOI
[8] Angel E., Bampis E., Gourvés L., Monnot J., “(Non)-approximability for the multicriteria TSP(1,2)”, Fundamentals of Computation Theory 2005: 15th Intern. Symposium (Lubeck, Germany, 2005), Lecture Notes in Computer Science, 3623, 329–340 | DOI | MR | Zbl
[9] Buzdalov M., Yakupov I., Stankevich A., “Fast implementation of the steady-state NSGA-II algorithm for two dimensions based on incremental non-dominated sorting”, Proceedings of the 2015 Annual conference on Genetic and Evolutionary Computation (GECCO–15) (Madrid, Spain, 2015), 647–654
[10] Deb K., Pratap A., Agarwal S., Meyarivan T., “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, 6:2 (2002), 182–197 | DOI
[11] Li H., Zhang Q., “Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II”, IEEE Transactions on Evolutionary Computation, 13:2 (2009), 284–302 | DOI
[12] Yuan Y., Xu H., Wang B., “An improved NSGA-III procedure for evolutionary many-objective optimization”, Proceedings of the 2014 Annual conference on Genetic and Evolutionary Computation (GECCO–14) (Vancouver, BC, Canada, 2014), 661–668
[13] Zitzler E., Brockhoff D., Thiele L., “The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration”, Proceedings of conference on Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science, 4403, Springer Publ., Berlin, 2007, 862–876 | DOI | MR
[14] Zitzler E., Laumanns M., Thiele L., “SPEA2: Improving the strength Pareto evolutionary algorithm”, Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems, Proceedings of EUROGEN 2001 conference (Athens, Greece, 2001), 95–100
[15] Garcia-Martinez C., Cordon O., Herrera F., “A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP”, European Journal of Operational Research, 180 (2007), 116–148 | DOI | Zbl
[16] Psychas I. D., Delimpasi E., Marinakis Y., “Hybrid evolutionary algorithms for the multiobjective traveling salesman problem”, Expert Systems with Applications, 42:22 (2015), 8956–8970 | DOI
[17] Reinelt G., “TSPLIB — a traveling salesman problem library”, ORSA Journal on Computing, 3:4 (1991), 376–384 | DOI | MR | Zbl
[18] Zakharov A. O., Kovalenko Yu. V., “Reduction of the Pareto set in bicriteria assymmetric traveling salesman problem”, OPTA-2018, Communications in Computer and Information Science, 871, eds. A. Eremeev, M. Khachay, Y. Kochetov, P. Pardalos, Springer Intern. Publ., Cham, 2018, 93–105 | DOI
[19] Noghin V. D., “Reducing the Pareto set algorithm based on an arbitrary finite set of information “quanta””, Scientific and Technical Information Processing, 41:5 (2014), 309–313 | DOI
[20] Klimova O. N., Noghin V. D., “Using interdependent information on the relative importance of criteria in decision making”, Computational Mathematics and Mathematical Physics, 46:12 (2006), 2080–2091 | DOI | MR
[21] Noghin V. D., “Reducing the Pareto set based on set-point information”, Scientific and Technical Information Processing, 38:6 (2011), 435–439 | DOI
[22] Zakharov A. O., “Pareto-set reduction using compound information of a closed type”, Scientific and Technical Information Processing, 39:5 (2012), 293–302 | DOI
[23] Emelichev V. A., Perepeliza V. A., “Complexity of vector optimization problems on graphs”, Optimization: A Journal of Mathematical Programming and Operations Research, 22:6 (1991), 906–918 | MR
[24] Vinogradskaya T. M., Gaft M. G., “The least upper estimate for the number of nondominated solutions in multicriteria problems”, Automation and Remote Control, 9 (1974), 111–118 (In Russian) | MR | Zbl
[25] Reeves C. R., “Genetic algorithms for the operations researcher”, INFORMS Journal on Computing, 9:3 (1997), 231–250 | DOI | MR | Zbl
[26] Eremeev A. V., Kovalenko Y. V., “Genetic algorithm with optimal recombination for the asymmetric travelling salesman problem”, Large-Scale Scientific Computing 2017, Lecture Notes of Computer Science, 10665, 2018, 341–349 | DOI | MR
[27] Whitley D., Starkweather T., McDaniel S., Mathias K., “A comparison of genetic sequencing operators”, Proceedings of the Fourth Intern. conference on Genetic Algorithms (San Diego, California, USA, 1991), 69–76
[28] Radcliffe N. J., “The algebra of genetic algorithms”, Annals of Mathematics and Artificial Intelligence, 10:4 (1994), 339–384 | DOI | MR | Zbl
[29] Jaszkiewicz A., Zielniewicz P., “Pareto memetic algorithm with path relinking for bi-objective traveling salesperson problem”, European Journal of Operational Research, 193 (2009), 885–890 | DOI | MR | Zbl
[30] Kumar R., Singh P. K., “Pareto evolutionary algorithm hybridized with local search for bi-objective TSP”, Hybrid Evolutionary Algorithms, Studies in Computational Intelligence, 75, eds. A. Abraham, C. Grosan, H. Ishibuchi, Springer Publ., Berlin–Heidelberg, 2007, 361–398
[31] Lust T., Teghem J., “The multiobjective traveling salesman problem: A survey and a new approach”, Advances in Multiobjective Nature Inspired Computing, Studies in Computational Intelligence, 272, eds. C. A. Coello Coello, C. Dhaenens, L. Jourdan, Springer Publ., Berlin–Heidelberg, 2010, 119–141 | Zbl
[32] Multiobjective optimization library, (accessed: 09.02.2018) http://home.ku.edu.tr/m̃oolibrary/