Mots-clés : random demand, maximin
@article{VSPUI_2018_14_4_a7,
author = {L. N. Polyakova and V. M. Bure and V. V. Karelin},
title = {Maximin approach in estimating of the goods order volume under condition of falling demand},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {352--361},
year = {2018},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a7/}
}
TY - JOUR AU - L. N. Polyakova AU - V. M. Bure AU - V. V. Karelin TI - Maximin approach in estimating of the goods order volume under condition of falling demand JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 352 EP - 361 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a7/ LA - ru ID - VSPUI_2018_14_4_a7 ER -
%0 Journal Article %A L. N. Polyakova %A V. M. Bure %A V. V. Karelin %T Maximin approach in estimating of the goods order volume under condition of falling demand %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 352-361 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a7/ %G ru %F VSPUI_2018_14_4_a7
L. N. Polyakova; V. M. Bure; V. V. Karelin. Maximin approach in estimating of the goods order volume under condition of falling demand. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 4, pp. 352-361. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a7/
[1] Bure V. M., Karelin V. V., Bure A. V., “Evaluation of the volume of ordering of goods while possible demand drop”, Vestnik of Saint Peterburg University. Applied Mathematics. Computer Science. Control Processes, 14:3 (2018), 252–260 (In Russian) | DOI
[2] Bure V. M., Karelin V. V., Polyakova L. N., Yagolnik I. V., “Modeling of the ordering process for piecewise-linear demand with saturation”, Vestnik of Saint Peterburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 138–146 (In Russian)
[3] Bure V. M., Karelin V. V., Myshkov S. K., Polyakova L. N., “Determination of order QUANTITY with piecewise-linear demand function with saturation”, Intern. Journal of Applied Engineering Research, 12:18 (2017), 7857–7862
[4] Giri B. C., Sharma S., “Optimal ordering policy for an inventory system with linearly increasing demand and alowable shortages under two levels trade credit financing”, Oper. Res. Intern. Journal, 16 (2016), 25–50 | DOI
[5] Aggarwal S. P., Jaggi C. K., “Ordering policies of deteriorating items under permissible delay in payments”, J. Oper. Res. Soc., 46:5 (1995), 658–662 | DOI | Zbl
[6] Dave U., “Letters and viewpoints on economic order quantity under conditions of permissible delay in payments”, J. Oper. Res. Soc., 46:5 (1985), 1069–1070 | DOI
[7] Chen S. C., Teng J. T., Skouri K., “Economic production quantity models for deteriorating items with up-stream full trade credit and down-stream partial trade credit”, Intern. J. Prod. Econ., 155 (2013), 302–309 | DOI
[8] Giri B. C., Sharma S., “An integrated inventory model for a deteriorating item with allowable shortages and credit linked wholesale price”, Optim. Lett., 37 (2015), 624–637 | DOI | MR
[9] Goyal S. K., “Economic order quantity under conditions of permissible delay in payments”, J. Oper. Res. Soc., 36:4 (1985), 335–338 | DOI
[10] Huang Y. F., “Optimal retailer's ordering policies in the EOQ model under trade credit financing”, J. Oper. Res. Soc., 54:9 (2003), 1011–1015 | DOI | Zbl
[11] Huang Y. F., Hsu K. H., “An EOQ model under retailer partial trade credit policy in supply chain”, Intern. J. Prod. Econ., 112:2 (2008), 655–664 | DOI
[12] Jamal A. M. M., Sarker B. R., Wang S., “An ordering policy for deteriorating items with allowable shortages and permissible delay in payment”, J. Oper. Res. Soc., 48:8 (1997), 826–833 | DOI | Zbl
[13] Khanra S., Ghosh S. K., Chaudhuri K. S., “An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment”, Appl. Math. Comput., 218:1 (2011), 1–9 | MR | Zbl
[14] Khanra S., Mandal B., Sarkar B., “An inventory model with time dependent demand and shortages under trade credit policy”, Econ. Model., 35 (2013), 349–355 | DOI | MR
[15] Maihami R., Abadi I. N. K., “Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging”, Math. Comp. Model., 55:5–6 (2012), 1722–1733 | DOI | MR | Zbl
[16] Bure V. M., Karelin V. V., Polyakova L. N., “Probabilistic model of terminal services”, Appl. Math. Sci., 10:39 (2016), 1945–1952 | MR
[17] Makarov V. L., Rubinov A. M., Mathematical theory economic dynamics and balance, Nauka Publ., M., 1973, 336 pp. (In Russian)
[18] Demyanov V. F., Minimax: differentiability in directions, Leningrad State University Publ., L., 1974, 112 pp. (In Russian)
[19] Polyakova L. N., “On the set of possible directions in problems with related restrictions”, Vestnik of Leningrad University, 1984, no. 1, 32–37 (In Russian)