The distribution centres choice in the facility location problem
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 4, pp. 346-351 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of a distribution centres network construction based on the statistical data analysis of the LTL transportation company is considered. The distribution centre network is built on the basis of the demand on terminal services. Statistical criterion for selecting the number of distribution centres in the network based on the application of the network robustness principle to the disturbances in demand for services in each terminal is suggested. Demand distortions are proposed to be carried out taking into account the forecasting of future trends in demand. The simulation study on real data is carried out. The considered task consists of a terminal network where the cargo is generated to deliver other terminals. The goal is to estimate the robust number of hubs in the network which minimizes the total flows costs and is resistant to the possible flows changes in the network. The results on the real dataset are illustrated and discussed.
Keywords: hub location problem, statistical decision making, robustness, networks.
@article{VSPUI_2018_14_4_a6,
     author = {A. Lozkins},
     title = {The distribution centres choice in the facility location problem},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {346--351},
     year = {2018},
     volume = {14},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a6/}
}
TY  - JOUR
AU  - A. Lozkins
TI  - The distribution centres choice in the facility location problem
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 346
EP  - 351
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a6/
LA  - en
ID  - VSPUI_2018_14_4_a6
ER  - 
%0 Journal Article
%A A. Lozkins
%T The distribution centres choice in the facility location problem
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 346-351
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a6/
%G en
%F VSPUI_2018_14_4_a6
A. Lozkins. The distribution centres choice in the facility location problem. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 4, pp. 346-351. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a6/

[1] O'Kelly M. E., “Activity levels at hub facilities in interacting networks”, Geogr. Anal., 18:4 (1986), 343–356 | DOI

[2] O'Kelly M. E., “The location of interacting hub facilities”, Transp. Sci., 20 (1986), 92–105 | DOI

[3] Klincewicz J. G., “Heuristics for the $p$-hub location problem”, European Journal of Oper. Research, 53 (1991), 25–37 | DOI | Zbl

[4] Skorin-Kapov D., Skorin-Kapov J., O'Kelly M. E., “Tight linear programming relaxations of uncapacitated $p$-hub median problems”, European Journal of Oper. Research, 94 (1996), 582–593 | DOI | Zbl

[5] O'Kelly M. E., Miller H. J., “Solution strategies for the single facility minimax hub location problem”, Papers in Regional Science, 70:4 (1991), 367–380 | DOI

[6] Kim H., O'Kelly M. E., “Reliable $p$-hub location problems in telecommunication networks”, Geogr. Anal., 41:3 (2009), 283–306 | DOI

[7] O'Kelly M. E., “Network hub structure and resilience”, Netw. Spat. Econ., 15:2 (2015), 235–251 | DOI

[8] Ebery J., Krishnamoorthy M., Ernst A. T., Boland N., “The capacitated multiple allocation hub location problems: formulations and algorithms”, European Journal of Oper. Research, 120 (2000), 614–631 | DOI | MR | Zbl

[9] Lee H., Shi Y., Nazem S. M., Kang S. Y., Park T. H., Sohn M. H., “Multicriteria hub decision making for rural area telecommunication networks”, European Journal of Oper. Research, 133 (2001), 483–495 | DOI | Zbl

[10] Wishart D., “Mode analysis: A generalization of nearest neighbor which reduces chaining effects”, Numerical Taxonomy, 1969, 282–311

[11] Hartigan J., Clustering algorithms, John Wiley Publ., New York, USA, 1975, 364 pp. | MR | Zbl

[12] Hartigan J., “Statistical theory in clustering”, J. Classification, 2 (1985), 63–76 | DOI | MR | Zbl

[13] Volkovich Z., Brazly Z., Morozensky L., “A statistical model of cluster stability”, Pattern Recognition, 41 (2008), 2174–2188 | DOI | Zbl

[14] Volkovich Z., Brazly Z., Toledano-Kitai D., Avros R., “The Hotelling's metric as a cluster stability measure”, Computer Modelling and New Technologies, 14 (2010), 65–72

[15] Pelleg D., Moore A., “$X$ means extending $k$-means with efficient estimation of the number of clusters”, Proceedings of the 17th Intern. conference on Machine Learning, Morgan Kaufmann Publ., San Francisco, USA, 2000, 727–734

[16] Barzily Z., Golani M., Volkovich Z., “On a simulation approach to cluster stability validation”, Mathematical and Computer Modeling in Applied Problems, Institute Informatics Problems RAS Publ., M., 2008, 86–112

[17] Toledano-Kitai D., Avros R., Volkovich Z., Weber G.-W., Yahalom O., “A binomial noised model for cluster validation”, Recent Advances in Intelligent $\$ Fuzzy Systems, Journal of Intelligent and Fuzzy Systems, 2013, 417–427 | MR

[18] Lozkins A., Bure V. M., “The probabilistic method of finding the local-optimum of clustering”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, no. 1, 28–37

[19] Lozkins A., Bure V. M., “The method of clusters stability assessing”, Stability and Control Processes in memory of V. I. Zubov (SCP), 2015 Intern. conference, IEEE, 2015, 479–482 | DOI | MR

[20] Lozkins A., Bure V. M., “Single hub location-allocation problem under robustness clustering concept”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 398–406 | DOI | MR

[21] Lim C., Sherali H. D., Uryasev S., “Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization”, Computational Optimization and Applications, 46:3 (2010), 391–415 | DOI | MR | Zbl