Mots-clés : Jensen–Shannon divergence
@article{VSPUI_2018_14_4_a5,
author = {V. Yu. Dobrynin and N. Rooney and J. A. Serdyuk},
title = {Setting lower bounds on {Jensen{\textendash}Shannon} divergence and its application to nearest neighbor document search},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {334--345},
year = {2018},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a5/}
}
TY - JOUR AU - V. Yu. Dobrynin AU - N. Rooney AU - J. A. Serdyuk TI - Setting lower bounds on Jensen–Shannon divergence and its application to nearest neighbor document search JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 334 EP - 345 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a5/ LA - en ID - VSPUI_2018_14_4_a5 ER -
%0 Journal Article %A V. Yu. Dobrynin %A N. Rooney %A J. A. Serdyuk %T Setting lower bounds on Jensen–Shannon divergence and its application to nearest neighbor document search %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 334-345 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a5/ %G en %F VSPUI_2018_14_4_a5
V. Yu. Dobrynin; N. Rooney; J. A. Serdyuk. Setting lower bounds on Jensen–Shannon divergence and its application to nearest neighbor document search. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 4, pp. 334-345. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a5/
[1] Manning C. D., Raghavan P., Schütze H., Introduction to information retrieval, Cambridge University Press, Cambridge, 2008 544 | Zbl
[2] Bentley J. L., “Multidimensional binary search trees used for associative searching”, Communications of the ACM, 18:9 (1975), 509–517 | DOI | Zbl
[3] Samet H., Foundations of multidimensional and metric data structures, Morgan Kaufmann Publ., San-Francisco, 2006, 1024 pp. | Zbl
[4] Cayton L., “Fast nearest neighbor retrieval for bregman divergences”, Proceedings of the 25th Intern. conference on Machine Learning, Morgan Kaufmann Publ., San Francisco, 2008, 112–119
[5] Coviello E., Mumtaz A., Chan A., Lanckriet G., “That was fast! Speeding up NN search of high dimensional distributions”, Proceedings of the 25th Intern. conference on Machine Learning, Morgan Kaufmann Publ., San Francisco, 2013, 468–476
[6] Li C., Chang E., Garcia-Molina H., Wiederhold G., “Clustering for approximate similarity search in high-dimensional spaces”, IEEE Transactions on Knowledge and Data Engineering, 14:4 (2002), 792–808 | DOI
[7] Arya S., Mount D. M., “Approximate nearest neighbor queries in fixed dimensions”, Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms. SODA, Society for Industrial and Applied Mathematics, 1993, 271–280 | MR
[8] Andoni A., Indyk P., “Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions”, 47th Annual IEEE Symposium on Foundations of Computer Science. FOCS'06 (2006), 459–468
[9] Indyk P., Motwani R., “Approximate nearest neighbors: towards removing the curse of dimensionality”, Proceedings of the 30th Annual ACM Symposium on theory of computing, 1998, 604–613 | MR | Zbl
[10] Andoni A., Indyk P., Nguyen H. L., Razenshteyn I., “Beyond Locality-Sensitive Hashing”, SODA, 2014, 1018–1028 | MR
[11] Li K., Malik J., Fast $k$-nearest neighbour search via prioritized DCI, 2017, arXiv: 1703.00440
[12] Li K., Malik J., “Fast $k$-nearest neighbour search via dynamic continuous indexing”, Intern. Conference on Machine Learning (2016), 671–679
[13] Pereira F., Tishby N., Lee L., “Distributional clustering of English words”, Proceedings of the 31st annual meeting on Association for Computational Linguistics, 1993, 183–190 | DOI
[14] Baker L. D., McCallum A. K., “Distributional clustering of words for text classification”, Proceedings of the 21st annual Intern. ACM SIGIR conference on Research and Development in Information Retrieval, 1998, 96–103
[15] Slonim N., Tishby N., “The power of word clusters for text classification”, 23rd European Colloquium on Information Retrieval Research, v. 1, 2001, 200
[16] Bekkerman R., El-Yaniv R., Tishby N., Winter Y., “On feature distributional clustering for text categorization”, Proceedings of the 24th annual Intern. ACM SIGIR conference on Research and Development in Information Retrieval, 2001, 146–153
[17] Dhillon I. S., Mallela S., Kumar R., “A divisive information theoretic feature clustering algorithm for text classification”, The Journal of Machine Learning Research, 3 (2013), 1265–1287 | MR
[18] Dobrynin V., Patterson D., Rooney N., “Contextual document clustering”, Advances in Information Retrieval, Springer Publ., Berlin–Heidelberg, 2004, 167–180 | DOI | Zbl
[19] Lin J., “Divergence measures based on the Shannon entropy”, IEEE Transactions on Information Theory, 37:1 (1991), 145–151 | DOI | MR | Zbl
[20] Lee L., “Measures of distributional similarity”, Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics, 1999, 25–32 | DOI | MR
[21] Topsoe F., “Some inequalities for information divergence and related measures of discrimination”, IEEE Transactions on Information Theory, 46:4 (2000), 1602–1609 | DOI | MR | Zbl
[22] Guntuboyina A., Saha S., Schiebinger G., “Sharp inequalities for $f$-divergences”, IEEE Transactions on Information Theory, 60:1 (2014), 104–121 | DOI | MR | Zbl
[23] Sason I. L., Tight bounds for symmetric divergence measures and a refined bound for lossless source coding, 2014, arXiv: 1403.7164 [cs.IT] | MR
[24] Capra J. A., Singh M., “Predicting functionally important residues from sequence conservation”, Bioinformatics, 23:15 (2007), 1875–1882 | DOI