@article{VSPUI_2018_14_4_a2,
author = {A. V. Fominykh},
title = {A method for solving differential inclusions with fixed right end},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {302--315},
year = {2018},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a2/}
}
TY - JOUR AU - A. V. Fominykh TI - A method for solving differential inclusions with fixed right end JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 302 EP - 315 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a2/ LA - en ID - VSPUI_2018_14_4_a2 ER -
%0 Journal Article %A A. V. Fominykh %T A method for solving differential inclusions with fixed right end %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 302-315 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a2/ %G en %F VSPUI_2018_14_4_a2
A. V. Fominykh. A method for solving differential inclusions with fixed right end. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 4, pp. 302-315. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a2/
[1] Aubin J.-P., Cellina A., Differential inclusions, Springer-Verlag Publ., Berlin, 1984, 344 pp. | MR | Zbl
[2] Polovinkin E. S., Multivalued analysis and differential inclusions, Fizmatlit Publ., M., 2014, 597 pp. (In Russian)
[3] Blagodatskih V. I., Introduction to optimal control, Vysshaya shkola Publ., M., 2001, 239 pp. (In Russian)
[4] Blagodatskih V. I., Filippov A. F., “Differential inclusions and optimal control”, Proceedings of the Steklov Institute of Mathematics, 169 (1985), 194–252 (In Russian) | MR
[5] Filippov A. F., Differential equations with discontinuous right-hand side, Nauka Publ., M., 1985, 226 pp. (In Russian) | MR | Zbl
[6] Watbled F., “On singular perturbations for differential inclusions on the infinite interval”, Journal of Mathematical Analysis and Applications, 310:2 (2005), 362–378 | DOI | MR | Zbl
[7] Gama R., Smirnov G., Watbled F., “Stability and optimality of solutions to differential inclusions via averaging method”, Set-Valued and Variational Analysis, 22:2 (2014), 349–374 | DOI | MR | Zbl
[8] Chengi Yi., “Existence of solutions for a class of nonlinear evolution inclusions with nonlocal conditions”, Journal of Optimization Theory and Applications, 162:1 (2014), 13–33 | DOI | MR
[9] Sandberg M., “Convergence of the forward Euler method for nonconvex differential inclusions”, SIAM J. Numer. Anal., 47:1 (2008), 308–320 | DOI | MR
[10] Bastien J., “Convergence order of implicit Euler numerical scheme for maximal monotone differential inclusions”, Z. Angew. Math. Phys., 64 (2013), 955–966 | DOI | MR | Zbl
[11] Beyn W.-J., Rieger J., “The implicit Euler scheme for one-sided Lipschitz differential inclusions”, Discrete and Continuous Dynamical Systems. Series B, 14:2 (2010), 409–428 | DOI | MR | Zbl
[12] Lempio F., “Modified Euler methods for differential inclusions”, Set-Valued Analysis and Differential Inclusions, A Collection of Papers resulting from a Workshop held in Pamporovo (Bulgaria, September 17–21, 1990), Progr. Systems Control Theory, 16, eds. A. B. Kurzhanski, V. M. Veliov, Birkhauser Verlag Publ., Boston–Basel–Berlin, 1993, 131–148 | MR | Zbl
[13] Veliov V., “Second order discrete approximations to strongly convex differential inclusions”, Systems Control Lett., 13 (1989), 263–269 | DOI | MR | Zbl
[14] Taubert K., “Dierenzenverfahren fiir Schwingungen mit trockener und zdher Reibung und fiir Regelungssysteme”, Numer. Math., 26 (1976), 379–395 | DOI | MR | Zbl
[15] Nikol'skiy M. S., “On approximation of the attainability domain of control process”, Mat. notes, 41 (1987), 71–76 (In Russian)
[16] Nikol'skiy M. S., “On a method for approximation of attainable set for a differential inclusion”, Journal of Vych. Mat. Math. Phys., 28 (1988), 1252–1254 (In Russian)
[17] Panasyuk A. I., “Equations of attainable set dynamics. Pt 1. Integral funnel equations”, Journal of Optim. Theory Appl., 64 (1990), 349–366 | DOI | MR | Zbl
[18] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numer. Algebra Control Optim., 3 (2013), 519–548 | DOI | MR | Zbl
[19] Dontchev A., Lempio F., “Difference methods for differential inclusions: A survey”, SIAM Rev., 34:2 (1992), 263–294 | DOI | MR | Zbl
[20] Schilling K., “An algorithm to solve boundary value problems for differential inclusions and applications in optimal control”, Numer. Funct. Anal. and Optimiz., 10:7 (1989), 733–764 | DOI | MR | Zbl
[21] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer Science+Business Media, New York, 2000, 600 pp. | MR | Zbl
[22] Demyanov V. F., Extremum conditions and variation calculus, Vysshaya shkola Publ., M., 2005, 335 pp. (In Russian)
[23] Kantorovich L. V., Akilov G. P., Functional analysis, Nauka Publ., M., 1977, 741 pp. (In Russian) | MR