Simulations of maglev EDS performance with detailed numerical models
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 4, pp. 286-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article finalizes the feasibility analysis of electrodynamic suspension systems (EDS) for magnetically levitated (maglev) transport. Parametric simulations for a range of EDS configurations were justified in comparison with evaluations from basic theoretical works of Russian authors. The electromagnetic behaviour of EDS components was simulated using detailed numerical models and original software oriented to parallel computations on multi-processor platforms. Results of computations were compared to measurements on scaled prototypes and data obtained at Inductrack experiments in the Lawrence Livermore National Laboratory. A desired accuracy of the simulation was demonstrated that proved reliability of the virtual prototyping and enabled scaling of the operational parameters with respect to the power consumption, load capacity, tolerances and other characteristics of real levitated vehicles.
Keywords: magnetic levitation, vehicle, electromagnetic suspension, hybrid suspension, finite elements, 3D modelling, magnetic field, eddy current, lifting and drag forces, normalized power, superconducting coil
Mots-clés : electrodynamic suspension, simulation, prototype, computational technique, permanent magnet.
@article{VSPUI_2018_14_4_a1,
     author = {V. M. Amoskov and D. N. Arslanova and A. M. Bazarov and A. V. Belov and V. A. Belyakov and A. A. Firsov and E. I. Gapionok and M. V. Kaparkova and V. P. Kukhtin and E. A. Lamzin and M. S. Larionov and A. V. Mizintsev and V. M. Mikhailov and A. N. Nezhentzev and D. A. Ovsyannikov and A. D. Ovsyannikov and I. Yu. Rodin and N. A. Shatil and S. E. Sytchevsky and V. N. Vasiliev and M. Yu. Zenkevich},
     title = {Simulations of maglev {EDS} performance with detailed numerical models},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {286--301},
     year = {2018},
     volume = {14},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a1/}
}
TY  - JOUR
AU  - V. M. Amoskov
AU  - D. N. Arslanova
AU  - A. M. Bazarov
AU  - A. V. Belov
AU  - V. A. Belyakov
AU  - A. A. Firsov
AU  - E. I. Gapionok
AU  - M. V. Kaparkova
AU  - V. P. Kukhtin
AU  - E. A. Lamzin
AU  - M. S. Larionov
AU  - A. V. Mizintsev
AU  - V. M. Mikhailov
AU  - A. N. Nezhentzev
AU  - D. A. Ovsyannikov
AU  - A. D. Ovsyannikov
AU  - I. Yu. Rodin
AU  - N. A. Shatil
AU  - S. E. Sytchevsky
AU  - V. N. Vasiliev
AU  - M. Yu. Zenkevich
TI  - Simulations of maglev EDS performance with detailed numerical models
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 286
EP  - 301
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a1/
LA  - en
ID  - VSPUI_2018_14_4_a1
ER  - 
%0 Journal Article
%A V. M. Amoskov
%A D. N. Arslanova
%A A. M. Bazarov
%A A. V. Belov
%A V. A. Belyakov
%A A. A. Firsov
%A E. I. Gapionok
%A M. V. Kaparkova
%A V. P. Kukhtin
%A E. A. Lamzin
%A M. S. Larionov
%A A. V. Mizintsev
%A V. M. Mikhailov
%A A. N. Nezhentzev
%A D. A. Ovsyannikov
%A A. D. Ovsyannikov
%A I. Yu. Rodin
%A N. A. Shatil
%A S. E. Sytchevsky
%A V. N. Vasiliev
%A M. Yu. Zenkevich
%T Simulations of maglev EDS performance with detailed numerical models
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 286-301
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a1/
%G en
%F VSPUI_2018_14_4_a1
V. M. Amoskov; D. N. Arslanova; A. M. Bazarov; A. V. Belov; V. A. Belyakov; A. A. Firsov; E. I. Gapionok; M. V. Kaparkova; V. P. Kukhtin; E. A. Lamzin; M. S. Larionov; A. V. Mizintsev; V. M. Mikhailov; A. N. Nezhentzev; D. A. Ovsyannikov; A. D. Ovsyannikov; I. Yu. Rodin; N. A. Shatil; S. E. Sytchevsky; V. N. Vasiliev; M. Yu. Zenkevich. Simulations of maglev EDS performance with detailed numerical models. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 4, pp. 286-301. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_4_a1/

[1] Zaitzev A., Talashkin G., Sokolova Yu., Maglev transportation, Saint Petersburg State Transport University Publ., Saint Petersburg, 2010, 160 pp. (In Russian)

[2] Bakhvalov Yu., Bocharov V., Vinokurov V., Nagorsky V., Vehicles with magnetic suspension, eds. V. Bocharov, V. Nagorsky, Mashinostroenie Publ., M., 1991, 320 pp. (In Russian)

[3] Dzenzersky V., Omelyanenko V., Vasiliev S., Matin V., Sergeev S., High-speed levitating transport with electrodynamic suspension, Naukova dumka Publ., Kiev, 2001, 482 pp. (In Russian)

[4] Kim K., Transportation systems employing magnetic suspension and superconducting magnet technology, Educational and Methodological Centre for Rail Transport Technology Publ., M., 2007, 360 pp. (In Russian)

[5] Glukhih V., Belyakov V., Mineev A., Applied physics of thermonuclear fusion, Saint Petersburg Polytechnic University Publ., Saint Petersburg, 2006, 348 pp. (In Russian)

[6] Amoskov V. M., Arslanova D. N., Bazarov A. M., Baranov G. A., Belov A. V., Belyakov V. A., Belyakova T. F., Vasiliev V. N., Gapionok E. I., Zaitzev A. A., Kaparkova M. V., Kukhtin V. P., Labusov A. N., Lamzin E. A., Larionov M. S., Maximenkova N. A., Mikhailov V. M., Nezhentzev A. N., Rodin I. Yu., Sytchevsky S. E., Firsov A. A., Khokhlov M. V., Shatil N. A., “Predictive electromagnetic simulation adapted for maglev railroad system development”, VANT. Series Thermonuclear syntesis, 37, no. 4, 2014, 84–95

[7] Amoskov V. M., Arslanova D. N., Bazarov A. M., Belov A. V., Belyakov V. A., Belyakova T. F., Firsov A. A., Gapionok E. I., Kaparkova M. V., Kukhtin V. P., Lamzin E. A., Larionov M. S., Maximenkova N. A., Mikhailov V. M., Nezhentzev A. N., Ovsyannikov D. A., Ovsyannikov A. D., Rodin I. Yu., Shatil N. A., Sychevsky S. E., Vasiliev V. N., Zaitzev A. A., “Simulation of electrodynamic suspension systems for levitating vehicles. I. Modelling of electromagnetic behaviour of maglev vehicles with electrodynamic suspension”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 4, 5–15 | MR

[8] Amoskov V. M., Arslanova D. N., Bazarov A. M., Belov A. V., Belyakov V. A., Belyakova T. F., Vasiliev V. N., Gapionok E. I., Zaitzev A. A., Kaparkova M. V., Kukhtin V. P., Lamzin E. A., Larionov M. S., Maximenkova N. A., Mikhailov V. M., Nezhentzev A. N., Ovsyannikov D. A., Ovsyannikov A. D., Rodin I. Yu., Sychevsky S. E., Firsov A. A., Shatil N. A., “Simulation of electrodynamic suspension systems for levitating vehicles. II. Validation of computational models”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 2, 18–32

[9] Amoskov V. M., Arslanova D. N., Bazarov A. M., Belov A. V., Belyakov V. A., Belyakova T. F., Firsov A. A., Gapionok E. I., Kaparkova M. V., Kukhtin V. P., Lamzin E. A., Larionov M. S., Maximenkova N. A., Mikhailov V. M., Nezhentzev A. N., Ovsyannikov D. A., Ovsyannikov A. D., Rodin I. Yu., Shatil N. A., Sychevsky S. E., Vasiliev V. N., Zaitzev A. A., “Simulation of electrodynamic suspension systems for levitating vehicles. III. Continuous track systems”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 3, 4–21 | MR

[10] Amoskov V. M., Arslanova D. N., Bazarov A. M., Belov A. V., Belyakov V. A., Belyakova T. F., Vasiliev V. N., Gapionok E. I., Zaitzev A. A., Zenkevich M. Yu., Kaparkova M. V., Kukhtin V. P., Lamzin E. A., Larionov M. S., Maximenkova N. A., Mikhailov V. M., Nezhentzev A. N., Ovsyannikov D. A., Ovsyannikov A. D., Rodin I. Yu., Sychevsky S. E., Firsov A. A., Shatil N. A., “Simulation of electrodynamic suspension systems for levitating vehicles. IV. Discrete track systems”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, no. 3, 4–17

[11] Zhuravlyov Yu. N., Magnetic bearings. Theory, calculation, application, Saint Petersburg Polytechnika Publ., Saint Petersburg, 2003, 204 pp. (In Russian)

[12] Bartenev Yu. G., Basalov V. G., Vargin A. M., Vyalukhin V. M., Dmitriev N. A., Zhukov D. A., Igrunov V. I., Korzakov V. N., Koshelev V. V., Lashmanov V. N., Logvin Yu. V., Petrik A. N., Selyakin A. G., Semyonov G. P., Stryukov V. N., Ushakov A. Yu., Chaika A. I., Chernykh S. O., Shagaliev R. M., Shatokhin A. V., Shlykov S. N., Shmakov E. L., Yarulin D. R., “Multipurpose compact supercomputer”, VANT. Series Mathematic modelling of physical processes, no. 2, 2012, 78–89

[13] Amoskov V., Arslanova D., Baranov G., Bazarov A., Belyakov V., Firsov A., Kaparkova M., Kavin A., Khokhlov M., Kukhtin V., Kuzmenkov V., Labusov A., Lamzin E., Lantzetov A., Larionov M., Nezhentzev A., Ovsyannikov D., Ovsyannikov A., Rodin I., Shatil N., Sytchevsky S., Vasiliev V., Zapretilina E., Zenkevich M., “Modelling EMS maglev systems to develop control algorithms”, Cybernetics and Physics, 8:1 (2018), 11–17 | MR

[14] Post R. F., Ryutov D. D., The Inductrack: A simpler approach to magnetic levitaiton, UCRL-ID-124115, May, Lawrence Livermore National Laboratory Publ., Livermore, 1996, 10 pp.

[15] Post R. F., Ryutov D. D., The Inductrack approach to magnetic levitaiton, UCRL-ID-138593, April, Lawrence Livermore National Laboratory Publ., Livermore, 2000, 6 pp.

[16] Post R. F., Inductrack magnet configuration, U. S. Patent no. 6633217, 2003, 13 pp.

[17] Post R. F., Laminated track design for Inductrack maglev systems, U. S. Patent no. 6758146, 2004, 12 pp.

[18] Hoburg J. F., Post R. F., A laminated track for the Inductrack System. Theory and Experiment, UCRL-CONF-201819, January, Lawrence Livermore National Laboratory Publ., Livermore, 2004, 5 pp.

[19] Hoburg J. F., Post R. F., “A laminated track for the Inductrack System: Theory and Experiment”, 18th Intern. Conference on Magnetically Levitated Systems and Linear Drives (Shanghai, China, October 25–29, 2004), 17 pp.

[20] Halbach K., “Applications of permanent magnets in accelerators and electron storage rings”, Journal of Applied Physics, 57 (1985), 3605 | DOI

[21] Amoskov V. M., Belov A. V., Belyakov V. A., Belyakova T. F., Gribov Yu. A., Kukhtin V. P., Lamzin E. A., Sytchevsky S. E., “Computation technology based on KOMPOT and KLONDIKE codes for magnetostatic simulations in tokamaks”, Plasma Devices Oper., 16 (2008), 89 | DOI

[22] Belov A., Doinikov N., Duke A., Kokotkov V., Korolkov M., Kotov V., Kukhtin V., Lamzin E., Sytchevsky S., “Transient electromagnetic analysis in tokamaks using TYPHOON code”, Fusion Engineering and Design, 31 (1996), 167–180 | DOI

[23] Amoskov V., Arslanova D., Belov A., Belyakov V., Belyakova T., Gapionok E., Krylova N., Kukhtin V., Lamzin E., Maximenkova N., Mazul I., Sytchevsky S., “Global computational models for EM transient analysis and design optimization of the ITER machine”, Fusion Eng. Des., 87, Sept. (2012), 1519–1532 | DOI

[24] Belov A., Belyakova T., Gornikel I., Kuchinsky V., Kukhtin V., Lamzin E., Semchenkov A., Shatil N., Sytchevsky S., “3D field simulation of complex systems with permanent magnets and excitation coils”, IEEE Transactions on Applied Superconductivity, 18:2 (2008), 1609–1612 | DOI

[25] Tamm I., Fundamentals of the theory of electricity, Mir Publ., M., 1979, 695 pp.

[26] Shneerson G., Fields and transients in high-power facilities, Energoatomizdat Publ., M., 1992, 413 pp. (In Russian)

[27] Koskin Yu. P., Tzeitlin L. A., Synchronous machines with non-magnetic rotor, Energoatomizdat Publ., L., 1990, 279 pp. (In Russian)

[28] Amoskov V. M., Arslanova D. N., Belov A. V., Belyakov V. A., Vasiliev V. N., Glukhih V. A., Zaitzev A. A., Kaparkova M. V., Korotkov V. A., Kukhtin V. P., Lamzin E. A., Larionov M. S., Mikhailov V. M., Nezhentzev A. N., Rodin I. Yu., Sychevsky S. E., Filatov O. G., Firsov A. A., Shatil N. A., Hybrid electromagnetic suspension system for levitated vehicles, Russian patent no. 2573524, 2014, 14 pp. (In Russian)

[29] Amoskov V. M., Arslanova D. N., Belov A. V., Belyakov V. A., Vasiliev V. N., Kaparkova M. V., Korotkov V. A., Kukhtin V. P., Lamzin E. A., Larionov M. S., Mikhailov V. M., Nezhentzev A. N., Rodin I. Yu., Sychevsky S. E., Filatov O. G., Firsov A. A., Shatil N. A., An electromagnetic suspension, a track, and a levitated vechicle, Russian patent no. 2579416, 2014, 29 pp. (In Russian)

[30] Amoskov V. M., Arslanova D. N., Belov A. V., Belyakov V. A., Vasiliev V. N., Glukhih V. A., Zaitzev A. A., Kaparkova M. V., Korotkov V. A., Kukhtin V. P., Lamzin E. A., Larionov M. S., Mizintzev A. V., Mikhailov V. M., Nezhentzev A. N., Rodin I. Yu., Sychevsky S. E., Filatov O. G., Firsov A. A., Shatil N. A., An electromagnetic suspension system for a combined-type track, Russian patent no. 2573135, 2014, 20 pp. (In Russian)

[31] Amoskov V. M., Arslanova D. N., Belov A. V., Belyakov V. A., Vasiliev V. N., Kaparkova M. V., Korotkov V. A., Kukhtin V. P., Lamzin E. A., Larionov M. S., Mikhailov V. M., Nezhentzev A. N., Rodin I. Yu., Sychevsky S. E., Filatov O. G., Firsov A. A., Shatil N. A., A superconductions electromagnetic suspension, a track, and a levitated vechicle, Russian patent no. 2566507, 2014, 24 pp. (In Russian)