Alpha-sets in finite-dimensional Euclidean spaces
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 3, pp. 261-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a technique for investigating nonconvex sets that occur when describing the evolution of wave fronts, in the construction of generalized solutions of boundary value problems for equations of Hamilton–Jacobi type, in the formation of resolving structures in the problems of dynamic control is developed. An estimate is obtained for the Hausdorff distance between such sets and their convex hulls. The estimate is based on the concept of a measure of nonconvexity $\alpha$. It is shown that for small $\alpha$, nonconvex $\alpha$-sets are close to convex. An example of a solution of the optimal control problem on the basis of $\alpha$-sets is give.
Mots-clés : $\alpha$-set, Hausdorff distance
Keywords: convex hull, control, performance, Hamilton–Jacobi equation.
@article{VSPUI_2018_14_3_a6,
     author = {V. N. Ushakov and A. A. Uspenskii and A. A. Ershov},
     title = {Alpha-sets in finite-dimensional {Euclidean} spaces},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {261--272},
     year = {2018},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a6/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Uspenskii
AU  - A. A. Ershov
TI  - Alpha-sets in finite-dimensional Euclidean spaces
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 261
EP  - 272
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a6/
LA  - ru
ID  - VSPUI_2018_14_3_a6
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Uspenskii
%A A. A. Ershov
%T Alpha-sets in finite-dimensional Euclidean spaces
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 261-272
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a6/
%G ru
%F VSPUI_2018_14_3_a6
V. N. Ushakov; A. A. Uspenskii; A. A. Ershov. Alpha-sets in finite-dimensional Euclidean spaces. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 3, pp. 261-272. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a6/

[1] Ushakov V. N., Uspenskii A. A., Fomin A. N., $\alpha$-sets and their properties, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences Publ., Yekaterinburg, 2004, 62 pp. (In Russian)

[2] Li E. B., Markus L., Foundation on optimal control theory, Wiley Press, New York etc., 1967, 576 pp. | MR

[3] Patsko V. S., Pyatko S. G., Fedotov A. A., “Three-dimensional reachability set for a nonlinear control system”, Proceedings of the Russian Academy of Sciences. Theory and Systems Control, 42:3 (2003), 8–16 (In Russian) | DOI | Zbl

[4] Michael E., “Paraconvex sets”, Math. Scand., 7:2 (1959), 312–315 | DOI | MR

[5] Semenov P. V., “Functionally paraconvex sets”, Mathematical Notes, 54:6 (1993), 1236–1240 | DOI | MR | Zbl

[6] Ivanov G. E., Weak convex sets and functions: theory and applications, Fizmatlit Publ., M., 2006, 352 pp. (In Russian)

[7] Uspenskii A. A., Lebedev P. D., “Geometry and asymptotics of wavefronts”, Proceedings of Higher educational Institutions. Mathematics, 52:3 (2008), 27–37 (In Russian) | DOI | Zbl

[8] Lebedev P. D., Uspenskii A. A., Ushakov V. N., “Construction of a minimax solution for an eikonal-type equation”, Proceedings of the Steklov Institute of Mathematics and Mechanics Ural Branch of the Russian Academy of Sciences, 14, no. 2, 2008, 182–191 (In Russian) | DOI | Zbl

[9] Uspenskii A. A., Lebedev P. D., “Construction of the optimal outcome function for a time-optimal problem on the basis of a symmetry set”, Automation and Remote Control, 70:7 (2009), 1132–1139 | DOI | MR | Zbl

[10] Ushakov V. N., Uspenskii A. A., Lebedev P. D., “Geometry of singular curves of a class of time-optimal problems”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2013, no. 3, 157–167 (In Russian)

[11] Ushakov V. N., Uspenskii A. A., “$\alpha$-sets in finite dimensional Euclidean spaces and their properties”, Vestnik of Udmurtsk University. Mathematics. Mekhanics. Computer Sciences, 26:1 (2016), 95–120 (In Russian) | DOI | Zbl

[12] Subbotin A. I., Minimax inequalities and the Hamilton–Jacobi equations, Nauka Publ., M., 1991, 214 pp. (In Russian)

[13] Dem'yanov V. F., Vasil'yev L. V., Nondifferentiable optimization, Nauka Publ., M., 1981, 384 pp. (In Russian)

[14] Uspenskii A. A., Lebedev P. D., “Analytical and numerical design of the optimal result function for one class of performance problems”, Applied Mathematics and Informatics. Proceedings of the Faculty of Computational Mathematics and Cybernetics M. V. Lomonosov Moscow State University, 2007, no. 27, 65–79 (In Russian)

[15] Uspenskii A. A., “Necessary conditions for the existence of pseudo-vertices of a boundary set in the Dirichlet problem for the eikonal equation”, Proceedings of the Institute of Mathematics and Mechanics Ural Branch of the Russian Academy of Sciences, 21, no. 1, 2015, 250–263 (In Russian)

[16] Starr R. M., “Quasi-equilibria in markets with non-convex preferences”, Econometrica, 37:1 (1969), 25–38 | DOI | Zbl