Mots-clés : random demand
@article{VSPUI_2018_14_3_a5,
author = {V. M. Bure and V. V. Karelin and A. V. Bure},
title = {Evaluation of the volume of ordering of goods while possible demand drop},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {252--260},
year = {2018},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a5/}
}
TY - JOUR AU - V. M. Bure AU - V. V. Karelin AU - A. V. Bure TI - Evaluation of the volume of ordering of goods while possible demand drop JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 252 EP - 260 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a5/ LA - ru ID - VSPUI_2018_14_3_a5 ER -
%0 Journal Article %A V. M. Bure %A V. V. Karelin %A A. V. Bure %T Evaluation of the volume of ordering of goods while possible demand drop %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 252-260 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a5/ %G ru %F VSPUI_2018_14_3_a5
V. M. Bure; V. V. Karelin; A. V. Bure. Evaluation of the volume of ordering of goods while possible demand drop. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 3, pp. 252-260. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a5/
[1] Bure V. M., Karelin V. V., Polyakova L. N., Yagolnik I. V., “Modeling of the ordering process for piecewise-linear demand with saturation”, Vestnik of Saint Peterburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 138–146 (In Russian)
[2] Bure V. M., Karelin V. V., Myshkov S. K., Polyakova L. N., “Determination of order QUANTITY with piecewise-linear demand function with saturation”, Intern. Journal of Applied Engineering Research, 12:18 (2017), 7857–7862
[3] Giri B. C., Sharma S., “Optimal ordering policy for an inventory system with linearly increasing demand and alowable shortages under two levels trade credit financing”, Oper. Res. Intern. Journal, 16 (2016), 25–50 | DOI
[4] Aggarwal S. P., Jaggi C. K., “Ordering policies of deteriorating items under permissible delay in payments”, J. Oper. Res. Soc., 46:5 (1995), 658–662 | DOI | Zbl
[5] Dave U., “Letters and viewpoints on economic order quantity under conditions of permissible delay in payments”, J. Oper. Res. Soc., 46:5 (1985), 1069–1070 | DOI
[6] Chen S. C., Teng J. T., Skouri K., “Economic production quantity models for deteriorating items with up-stream full trade credit and down-stream partial trade credit”, Intern. Journal Prod. Econ., 155 (2013), 302–309 | DOI
[7] Giri B. C., Sharma S., “An integrated inventory model for a deteriorating item with allowable shortages and credit linked wholesale price”, Optim. Lett., 37 (2015), 624–637 | DOI | MR
[8] Goyal S. K., “Economic order quantity under conditions of permissible delay in payments”, J. Oper. Res. Soc., 36:4 (1985), 335–338 | DOI
[9] Huang Y. F., “Optimal retailer's ordering policies in the EOQ model under trade credit financing”, J. Oper. Res. Soc., 54:9 (2003), 1011–1015 | DOI | Zbl
[10] Huang Y. F., Hsu K. H., “An EOQ model under retailer partial trade credit policy in supply chain”, Intern. Journal Prod. Econ., 112:2 (2008), 655–664 | DOI
[11] Jamal A. M. M., Sarker B. R., Wang S., “An ordering policy for deteriorating items with allowable shortages and permissible delay in payment”, J. Oper. Res. Soc., 48:8 (1997), 826–833 | DOI | Zbl
[12] Khanra S., Ghosh S. K., Chaudhuri K. S., “An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment”, Appl. Math. Comput., 218:1 (2011), 1–9 | MR | Zbl
[13] Khanra S., Mandal B., Sarkar B., “An inventory model with time dependent demand and shortages under trade credit policy”, Econ. Model., 35 (2013), 349–355 | DOI | MR
[14] Maihami R., Abadi I. N. K., “Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging”, Math. Comp. Model., 55:5–6 (2012), 1722–1733 | DOI | MR | Zbl
[15] Bure V. M., Karelin V. V., Polyakova L. N., “Probabilistic model of terminal services”, Applied Mathematical Sciences, 10:39 (2016), 1945–1952 | DOI | MR
[16] Bure V. M., Karelin V. V., Polyakova L. N., “The problem of resource allocation between the protection system and constructing redundant components”, Applied Mathematical Sciences, 9:93–96 (2015), 4771–4779 | DOI
[17] Karelin V. V., “Probabilistic model of terminal services”, Automation and Remote Control, 65:3 (2004), 483–492 | DOI | MR | Zbl