A family of sixth-order methods with six stages
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 3, pp. 215-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with construction of an efficient explicit sixth order method for structurally partitioned systems of ordinary differential equations. The general scheme of the method is presented, which algorithmically uses structural properties of a system of differential equations. The order conditions and the simplifying conditions for the considered explicit six-stage method are written down and their consistency is determined. The general solution with seven free parameters is obtained and a computational scheme for certain values of free parameters is constructed. Its performance on test problems is compared to three other explicit sixth-order methods.
Keywords: order, order conditions, simplifying conditions.
@article{VSPUI_2018_14_3_a2,
     author = {I. V. Olemskoy and N. A. Kovrizhnykh},
     title = {A family of sixth-order methods with six stages},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {215--229},
     year = {2018},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a2/}
}
TY  - JOUR
AU  - I. V. Olemskoy
AU  - N. A. Kovrizhnykh
TI  - A family of sixth-order methods with six stages
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 215
EP  - 229
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a2/
LA  - ru
ID  - VSPUI_2018_14_3_a2
ER  - 
%0 Journal Article
%A I. V. Olemskoy
%A N. A. Kovrizhnykh
%T A family of sixth-order methods with six stages
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 215-229
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a2/
%G ru
%F VSPUI_2018_14_3_a2
I. V. Olemskoy; N. A. Kovrizhnykh. A family of sixth-order methods with six stages. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 3, pp. 215-229. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a2/

[1] Olemskoy I. V., “Fifth-order four-stage method for numerical integration of special systems”, Comput. Math. Math. Phys., 42 (2002), 1135–1145 | MR

[2] Olemskoy I. V., “Structural approach to the design of explicit one-stage methods”, Comput. Math. Math. Phys., 43 (2003), 918–931 | MR

[3] Olemskoy I. V., “Modification of structural properties detection algorithm”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2006, no. 2, 55–64 (In Russian)

[4] Olemskoy I. V., Eremin A. S., Ivanov A. P., “Sixth order method with six stages for integrating special systems of ordinary differential equations”, 2015 Intern. Conference on “Stability and Control Processes” in memory of V. I. Zubov. SCP-2015. Proceedings, 2015, 110–113

[5] Butcher J. C., “On Runge–Kutta processes of high order”, Journal of the Australian Mathematical Society, 4 (1964), 179–194 | DOI | MR | Zbl

[6] Tsitouras Ch., Famelis I. Th., “On phase-fitted modified Runge–Kutta pairs of order 6(5)”, Intern. conference of Numerical Analysis and Applied Mathematics: Extended Abstracts (Crete, 2006), 1962–1965

[7] Chammud (Hammud) G. M., “A three-dimensional family of seven-step Runge–Kutta methods of order 6. Numerical Methods and Programming”, Advanced Computing, 2 (2001), 159–166

[8] Hairer E., Norsett S., Wanner G., Solving ordinary differential equations, Springer Series in Computational mathematics, 2nd ed., Springer-Verlag Publ., Berlin–Heidelberg, 2008, 528 pp. | MR

[9] Shymanchuk D. V., Shmyrov A. S., “Construction of the return trajectory to the neighborhood of the collinear libration point of the Sun–Earth system”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2013, no. 2, 76–85 (In Russian)