@article{VSPUI_2018_14_3_a2,
author = {I. V. Olemskoy and N. A. Kovrizhnykh},
title = {A family of sixth-order methods with six stages},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {215--229},
year = {2018},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a2/}
}
TY - JOUR AU - I. V. Olemskoy AU - N. A. Kovrizhnykh TI - A family of sixth-order methods with six stages JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 215 EP - 229 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a2/ LA - ru ID - VSPUI_2018_14_3_a2 ER -
%0 Journal Article %A I. V. Olemskoy %A N. A. Kovrizhnykh %T A family of sixth-order methods with six stages %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 215-229 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a2/ %G ru %F VSPUI_2018_14_3_a2
I. V. Olemskoy; N. A. Kovrizhnykh. A family of sixth-order methods with six stages. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 3, pp. 215-229. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a2/
[1] Olemskoy I. V., “Fifth-order four-stage method for numerical integration of special systems”, Comput. Math. Math. Phys., 42 (2002), 1135–1145 | MR
[2] Olemskoy I. V., “Structural approach to the design of explicit one-stage methods”, Comput. Math. Math. Phys., 43 (2003), 918–931 | MR
[3] Olemskoy I. V., “Modification of structural properties detection algorithm”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2006, no. 2, 55–64 (In Russian)
[4] Olemskoy I. V., Eremin A. S., Ivanov A. P., “Sixth order method with six stages for integrating special systems of ordinary differential equations”, 2015 Intern. Conference on “Stability and Control Processes” in memory of V. I. Zubov. SCP-2015. Proceedings, 2015, 110–113
[5] Butcher J. C., “On Runge–Kutta processes of high order”, Journal of the Australian Mathematical Society, 4 (1964), 179–194 | DOI | MR | Zbl
[6] Tsitouras Ch., Famelis I. Th., “On phase-fitted modified Runge–Kutta pairs of order 6(5)”, Intern. conference of Numerical Analysis and Applied Mathematics: Extended Abstracts (Crete, 2006), 1962–1965
[7] Chammud (Hammud) G. M., “A three-dimensional family of seven-step Runge–Kutta methods of order 6. Numerical Methods and Programming”, Advanced Computing, 2 (2001), 159–166
[8] Hairer E., Norsett S., Wanner G., Solving ordinary differential equations, Springer Series in Computational mathematics, 2nd ed., Springer-Verlag Publ., Berlin–Heidelberg, 2008, 528 pp. | MR
[9] Shymanchuk D. V., Shmyrov A. S., “Construction of the return trajectory to the neighborhood of the collinear libration point of the Sun–Earth system”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2013, no. 2, 76–85 (In Russian)