The maximum likelihood method for detecting communities in communication networks
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 3, pp. 200-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The community detection in social and communication networks is an important problem in many applied fields: biology, sociology, social networks. This is especially true for networks that are represented by large graphs. In this paper, we propose a method for community detection based on the maximum likelihood method for the random formation of a network with given parameters of the tightness of connections within the community and between different communities. A numerical algorithm for finding the maximum of the objective function over all possible network partitions is described. The algorithm is implemented and tested on real networks of small dimension.
Keywords: network communities, detecting communities in a network, maximum likelihood method, Gibbs sampling.
@article{VSPUI_2018_14_3_a1,
     author = {V. V. Mazalov and N. N. Nikitina},
     title = {The maximum likelihood method for detecting communities in communication networks},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {200--214},
     year = {2018},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a1/}
}
TY  - JOUR
AU  - V. V. Mazalov
AU  - N. N. Nikitina
TI  - The maximum likelihood method for detecting communities in communication networks
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 200
EP  - 214
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a1/
LA  - ru
ID  - VSPUI_2018_14_3_a1
ER  - 
%0 Journal Article
%A V. V. Mazalov
%A N. N. Nikitina
%T The maximum likelihood method for detecting communities in communication networks
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 200-214
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a1/
%G ru
%F VSPUI_2018_14_3_a1
V. V. Mazalov; N. N. Nikitina. The maximum likelihood method for detecting communities in communication networks. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 3, pp. 200-214. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a1/

[1] Freeman L. C., “A set of measures of centrality based on betweenness”, Sociometry, 40 (1977), 35–41 | DOI

[2] Levin D. A., Peres Y., Markov chains and mixing times, Amer. Mathematical Soc., Providence, Rhode Island, 2017, 447 pp. | MR | Zbl

[3] Page L., Brin S., Motwani R., Winograd T., The PageRank citation ranking: Bringing order to the web, technical report, Stanford InfoLab, Stanford, 1998, 17 pp. | Zbl

[4] Pons P., Latapy M., “Computing communities in large networks using random walks”, Journal of Graph Algorithms and Applications, 10:2 (2006), 191–218 | DOI | MR | Zbl

[5] Avrachenkov K. E., Mazalov V. V., Tsynguev B. T., “Beta current flow centrality for weighted networks”, Proceedings of CSoNET-2015, LNCS, 9197, 2015, 216–227

[6] Brandes U., Fleischer D., “Centrality measures based on current flow”, Proceedings of the 22nd annual conference on Theoretical Aspects of Computer Science, 2005, 533–544 | MR | Zbl

[7] Mazalov V., Tsynguev B., “Kirchhoff centrality measure for collaboration network”, CSoNet-2016, LNCS, 9795, 2016, 147–157

[8] Bogomolnaia A., Jackson M. O., “The stability of hedonic coalition structures”, Games and Economic Behavior, 38:2 (2002), 201–230 | DOI | MR | Zbl

[9] Mazalov V. V., Avrachenkov K. E., Trukhina L. I., Tsynguev B. T., “Game-theoretic centrality measures for weighted graphs”, Fundamenta Informaticae, 145:3 (2016), 341–358 | DOI | MR | Zbl

[10] Fortunato S., Barthelemy M., “Resolution limit in community detection”, Proceedings of the National Academy of Sciences USA, 104:1 (2007), 36–41 | DOI | MR

[11] Girvan M., Newman M. E. J., “Community structure in social and biological networks”, Proceedings of the National Academy of Sciences USA, 99:12 (2002), 7821–7826 | DOI | MR | Zbl

[12] Fortunato S., “Community detection in graphs”, Physics Reports, 486:3 (2010), 75–174 | DOI | MR

[13] Zachary W. W., “An information flow model for conflict and fission in small groups”, Journal of Anthropological Research, 33:4 (1977), 452–473 | DOI

[14] Jackson M. O., Social and economic networks, Princeton University Press, Princeton, 2010, 520 pp. | MR | Zbl

[15] Kaur R., Singh S., “A survey of data mining and social network analysis based anomaly detection techniques”, Egypt Inf. Journal, 17:2 (2016), 199–216 | MR

[16] Newman M. E., Girvan M., “Finding and evaluating community structure in networks”, Physical Review E, 69:2 (2004), 026113 | DOI | MR

[17] Meila M., Shi J., “A Random walks view of spectral segmentation”, Proceedings of AISTATS, 2001, 1–6 | MR

[18] Myerson R. B., “Graphs and cooperation in games”, Math. Oper. Res., 2 (1977), 225–229 | DOI | MR | Zbl

[19] Avrachenkov K., Kondratev A., Mazalov V., “Cooperative Game Theory approaches for network partitioning”, Computing and Combinatorics, COCOON 2017, LNCS, 10392, eds. Y. Cao, J. Chen, 2017, 591–603 | MR

[20] Copic J., Jackson M., Kirman A., “Identifying community structures from network data via maximum likelihood methods”, The B. E. Journal of Theoretical Economics, 9:1 (2009), 1635–1704 | DOI | MR

[21] Mathematica Online, , Wolfram Research, Inc., Champaign, IL., 2018 www.wolfram.com | MR

[22] Vinh N. X., Epps J., Bailey J., “Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance”, Journal of Machine Learning Research, 11 (2010), 2837–2854 | MR | Zbl

[23] Kvalseth T. O., “Entropy and correlation: Some comments”, IEEE Transactions on Systems, Man and Cybernetics, 17:3 (1987), 517–519 | DOI | MR

[24] Strehl A., Ghosh J., “Cluster ensembles – a knowledge reuse framework for combining multiple partitions”, Journal of Machine Learning Research, 3 (2002), 583–617 | MR

[25] Hubert L., Arabie P., “Comparing partitions”, Journal of Classification, 2:1 (1985), 193–218 | DOI

[26] Steinley D., “Properties of the Hubert-Arabie adjusted Rand index”, Psychol. Methods, 9:3 (2004), 386–396 | DOI

[27] Lusseau D., Schneider K., Boisseau O. J. et al., “The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations”, Behav. Ecol. Sociobiol., 54 (2003), 396–405 | DOI