@article{VSPUI_2018_14_3_a1,
author = {V. V. Mazalov and N. N. Nikitina},
title = {The maximum likelihood method for detecting communities in communication networks},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {200--214},
year = {2018},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a1/}
}
TY - JOUR AU - V. V. Mazalov AU - N. N. Nikitina TI - The maximum likelihood method for detecting communities in communication networks JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 200 EP - 214 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a1/ LA - ru ID - VSPUI_2018_14_3_a1 ER -
%0 Journal Article %A V. V. Mazalov %A N. N. Nikitina %T The maximum likelihood method for detecting communities in communication networks %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 200-214 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a1/ %G ru %F VSPUI_2018_14_3_a1
V. V. Mazalov; N. N. Nikitina. The maximum likelihood method for detecting communities in communication networks. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 3, pp. 200-214. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_3_a1/
[1] Freeman L. C., “A set of measures of centrality based on betweenness”, Sociometry, 40 (1977), 35–41 | DOI
[2] Levin D. A., Peres Y., Markov chains and mixing times, Amer. Mathematical Soc., Providence, Rhode Island, 2017, 447 pp. | MR | Zbl
[3] Page L., Brin S., Motwani R., Winograd T., The PageRank citation ranking: Bringing order to the web, technical report, Stanford InfoLab, Stanford, 1998, 17 pp. | Zbl
[4] Pons P., Latapy M., “Computing communities in large networks using random walks”, Journal of Graph Algorithms and Applications, 10:2 (2006), 191–218 | DOI | MR | Zbl
[5] Avrachenkov K. E., Mazalov V. V., Tsynguev B. T., “Beta current flow centrality for weighted networks”, Proceedings of CSoNET-2015, LNCS, 9197, 2015, 216–227
[6] Brandes U., Fleischer D., “Centrality measures based on current flow”, Proceedings of the 22nd annual conference on Theoretical Aspects of Computer Science, 2005, 533–544 | MR | Zbl
[7] Mazalov V., Tsynguev B., “Kirchhoff centrality measure for collaboration network”, CSoNet-2016, LNCS, 9795, 2016, 147–157
[8] Bogomolnaia A., Jackson M. O., “The stability of hedonic coalition structures”, Games and Economic Behavior, 38:2 (2002), 201–230 | DOI | MR | Zbl
[9] Mazalov V. V., Avrachenkov K. E., Trukhina L. I., Tsynguev B. T., “Game-theoretic centrality measures for weighted graphs”, Fundamenta Informaticae, 145:3 (2016), 341–358 | DOI | MR | Zbl
[10] Fortunato S., Barthelemy M., “Resolution limit in community detection”, Proceedings of the National Academy of Sciences USA, 104:1 (2007), 36–41 | DOI | MR
[11] Girvan M., Newman M. E. J., “Community structure in social and biological networks”, Proceedings of the National Academy of Sciences USA, 99:12 (2002), 7821–7826 | DOI | MR | Zbl
[12] Fortunato S., “Community detection in graphs”, Physics Reports, 486:3 (2010), 75–174 | DOI | MR
[13] Zachary W. W., “An information flow model for conflict and fission in small groups”, Journal of Anthropological Research, 33:4 (1977), 452–473 | DOI
[14] Jackson M. O., Social and economic networks, Princeton University Press, Princeton, 2010, 520 pp. | MR | Zbl
[15] Kaur R., Singh S., “A survey of data mining and social network analysis based anomaly detection techniques”, Egypt Inf. Journal, 17:2 (2016), 199–216 | MR
[16] Newman M. E., Girvan M., “Finding and evaluating community structure in networks”, Physical Review E, 69:2 (2004), 026113 | DOI | MR
[17] Meila M., Shi J., “A Random walks view of spectral segmentation”, Proceedings of AISTATS, 2001, 1–6 | MR
[18] Myerson R. B., “Graphs and cooperation in games”, Math. Oper. Res., 2 (1977), 225–229 | DOI | MR | Zbl
[19] Avrachenkov K., Kondratev A., Mazalov V., “Cooperative Game Theory approaches for network partitioning”, Computing and Combinatorics, COCOON 2017, LNCS, 10392, eds. Y. Cao, J. Chen, 2017, 591–603 | MR
[20] Copic J., Jackson M., Kirman A., “Identifying community structures from network data via maximum likelihood methods”, The B. E. Journal of Theoretical Economics, 9:1 (2009), 1635–1704 | DOI | MR
[21] Mathematica Online, , Wolfram Research, Inc., Champaign, IL., 2018 www.wolfram.com | MR
[22] Vinh N. X., Epps J., Bailey J., “Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance”, Journal of Machine Learning Research, 11 (2010), 2837–2854 | MR | Zbl
[23] Kvalseth T. O., “Entropy and correlation: Some comments”, IEEE Transactions on Systems, Man and Cybernetics, 17:3 (1987), 517–519 | DOI | MR
[24] Strehl A., Ghosh J., “Cluster ensembles – a knowledge reuse framework for combining multiple partitions”, Journal of Machine Learning Research, 3 (2002), 583–617 | MR
[25] Hubert L., Arabie P., “Comparing partitions”, Journal of Classification, 2:1 (1985), 193–218 | DOI
[26] Steinley D., “Properties of the Hubert-Arabie adjusted Rand index”, Psychol. Methods, 9:3 (2004), 386–396 | DOI
[27] Lusseau D., Schneider K., Boisseau O. J. et al., “The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations”, Behav. Ecol. Sociobiol., 54 (2003), 396–405 | DOI