On the limiting behavior of a time-delay system’s solutions
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 173-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, we study motions of time-delay systems that have limiting behavior for an unbounded increase in time in the case when the limit sets might not be invariant with respect to initial differential-difference equations. The concept of an asymptotic quiescent position for the trajectories of time-delay systems is introduced. By the use of the Lyapunov functionals method, sufficient conditions for the existence of an asymptotic quiescent position for systems of differential-difference equations were obtained. In the case when a general system has a trivial solution, new sufficient conditions for its asymptotic stability are obtained. Namely, the condition of the negativity of the time-derivative of Krasovskii functionals is weakened.
Keywords: time-delay systems, asymptotic stability, asymptotic quiescent position, Lyapunov functions.
@article{VSPUI_2018_14_2_a9,
     author = {S. E. Kuptsova and S. Yu. Kuptsov and N. A. Stepenko},
     title = {On the limiting behavior of a time-delay system{\textquoteright}s solutions},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {173--182},
     year = {2018},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a9/}
}
TY  - JOUR
AU  - S. E. Kuptsova
AU  - S. Yu. Kuptsov
AU  - N. A. Stepenko
TI  - On the limiting behavior of a time-delay system’s solutions
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 173
EP  - 182
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a9/
LA  - ru
ID  - VSPUI_2018_14_2_a9
ER  - 
%0 Journal Article
%A S. E. Kuptsova
%A S. Yu. Kuptsov
%A N. A. Stepenko
%T On the limiting behavior of a time-delay system’s solutions
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 173-182
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a9/
%G ru
%F VSPUI_2018_14_2_a9
S. E. Kuptsova; S. Yu. Kuptsov; N. A. Stepenko. On the limiting behavior of a time-delay system’s solutions. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 173-182. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a9/

[1] Krasovskii N. N., Some problems of the theory of stability of motions, State Publ. of Phys. and Math. Literature, M., 1959, 211 pp. (in Russian)

[2] Bellman R., Cooke K. L., Differential-difference equations, Academic Press, New York, 1963, 482 pp. | MR | Zbl

[3] Hale J., Theory of functional differential equations, Springer Press, New York, 1977, 365 pp. | MR | Zbl

[4] Zubov V. I., Lectures on theory of control, Nauka Publ., M., 1975, 496 pp.

[5] Zubov V. I., “To the theory of linear time-delay systems”, Proc. of Higher Educational Institutions. Mathematics, 1958, no. 6, 86–95 (in Russian)

[6] Zubov V. I., Oscillations and waves, Leningr. State University Publ., L., 1989, 416 pp. (in Russian)

[7] Kuptsova S. E., “An asymptotically invariant sets”, Control Processes and Stability (CPS), Saint Petersburg University Publ., Saint Petersburg, 2006, 50–56 (in Russian)

[8] Zubov S. V., “On the rated stability of a class of nonlinear systems”, Control Processes and Stability (CPS), Saint Petersburg University Publ., Saint Petersburg, 2006, 29–33 (in Russian)

[9] Tikhomirov O. G., Temkina E. V., “Asymptotic quiescent position for systems of homogeneous non-autonomous differential equations”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 2, 58–65 (in Russian)

[10] Ekimov A. V., Svirkin M. V., “Analysis of asymptotic equilibrium state of differential systems using Lyapunov function method”, 2015 Intern. conference “Stability and control processes” in memory of V. I. Zubov (SCP), IEEE, Saint Petersburg, 2015, 45–47

[11] Kuptsova S. E., “The asymptotic rest positions in the systems of difference equations”, Control Systems and Information Technology, 2014, no. 2 (56), 67–71 (in Russian)

[12] Kuptsov S. Yu., Kuptsova S. E., Zaranik U. P., “On asymptotic quiescent position of nonlinear difference systems with perturbations”, 2015 Intern. conference “Stability and control processes” in memory of V. I. Zubov (SCP), IEEE, Saint Petersburg, 2015, 20–22

[13] Kharitonov V. L., Time-delay systems: Lyapunov functionals and matrices, Birkhäuser, Basel, 2013, 311 pp. | MR | Zbl

[14] Kudryavtsev L. D., A course in mathematical analysis, In 3 vol., v. 1, Vysshaya shkola Publ., M., 1988, 712 pp. (in Russian)