Mathematical modelling of pulsative blood flow in deformable arteries
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 158-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The comprehensive analysis of structure and properties was performed for the blood and blood vessels. This analysis shows that the blood may be considered as a liquid only in large and middle vessels, where a diameter of vessel is much more than a dimension of blood cells and their aggregates. In addition, taking into account the influence of complex internal structure on its mechanical properties, it is necessary to consider it as a non-Newtonian liquid. In this regard, the non-Newtonian liquid with the power connection of the stress tensor with the strain velocity tensor was chosen for mathematical modelling of liquid. The pulsating flow is created by the pulsating nature of the boundary condition for the blood flow at the input cross-section. The vessels are considered as thick-walled cylinders with hyperelastic walls. The interaction between blood and vessel wall is defined by means of semi-slip boundary condition. Computer simulation was performed in software complex ANSYS with the use of the direct conjugating module CFX and the module ANSYS “Multiphysics”. As a result, the pressure and stress wave propagation on the vessel wall was obtained.
Keywords: mathematical modelling, pulsating blood flow, non-Newtonian liquid, deformable blood vessels.
@article{VSPUI_2018_14_2_a7,
     author = {V. P. Tregubov and S. V. Rutkina},
     title = {Mathematical modelling of pulsative blood flow in deformable arteries},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {158--164},
     year = {2018},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a7/}
}
TY  - JOUR
AU  - V. P. Tregubov
AU  - S. V. Rutkina
TI  - Mathematical modelling of pulsative blood flow in deformable arteries
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 158
EP  - 164
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a7/
LA  - en
ID  - VSPUI_2018_14_2_a7
ER  - 
%0 Journal Article
%A V. P. Tregubov
%A S. V. Rutkina
%T Mathematical modelling of pulsative blood flow in deformable arteries
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 158-164
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a7/
%G en
%F VSPUI_2018_14_2_a7
V. P. Tregubov; S. V. Rutkina. Mathematical modelling of pulsative blood flow in deformable arteries. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 158-164. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a7/

[1] Schmid-Schonbein H., “Rheological properties of human erythrocytes and their influence upon anomalous viscosity of blood”, Physiol. Rev., 63 (1971), 147–219

[2] Jung J., Lyczkowski R. W., Panchal C. B., Hassanein A., “Multiphase haemodynamics simulation of pulsative flow in a coronary artery”, J. Biomechanics, 39:20 (2006), 64–73

[3] Srivastava V. P., “Two-phase model of blood flow through stenosed tubes in the presence of a peripheral layer: applications”, J. Biomechanics, 29 (1996), 1377–1382 | DOI

[4] Gijsen F. G. H., Allanic E., Van De Vosse F. N., Janssen J. D., “The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 900 curved tube analysis”, J. Biomechanics, 32 (1999), 705–713 | DOI

[5] Baskurt O. K., Meiselman H. J., “Blood rheology and haemodynamics”, Seminars in thrombosis and hemostasis, 29:5 (2003), 435–450 | DOI

[6] Tregubov V. P., Zhukov N. K., “Computer simulation of the blood stream with availability of vessel pathologies”, Russian J. Biom., 2 (2017), 201–210

[7] Cho Y. I., Kensey K. R., “Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Pt. 1. Steady Flows”, Biorheology, 28 (1991), 241–262 | DOI

[8] Tokuda Y., Song M. H., Ueda Y., Usui A., Akita T., Yoneyama S., Maruyama S., “Three-dimensional numerical simulation of blood flow in the aortic arch during cardiopulmonary bypass”, Europ. J. Cardiothoracic Surgery, 33 (2008), 164–167 | DOI

[9] Numata S., Itatani K., Kanda K., Doi K., Yamazaki S., Morimoto K., Manabe K., Ikemoto K., Yaku H., “Blood flow analysis of the aortic arch using computational fluid dynamics”, Europ. J. Cardio-Thoracic Surgery, 49:6 (2016), 1–8 | DOI

[10] Tregubov V. P., “Mathematical modelling of the non-Newtonian blood flow in the aortic arc”, Computer Research and Modeling, 9:2 (2017), 259–269 | DOI

[11] Tregubov V., Mukhtarova D., “A model study of blood flow in branching vessels”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 13:1 (2017), 42–50 | MR

[12] Duta A., Tarbell J. M., “Influence of non-Newtonian behavior of blood on flow in elastic artery mofel”, J. Biomech. Eng., 118 (1996), 111–119 | DOI