@article{VSPUI_2018_14_2_a7,
author = {V. P. Tregubov and S. V. Rutkina},
title = {Mathematical modelling of pulsative blood flow in deformable arteries},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {158--164},
year = {2018},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a7/}
}
TY - JOUR AU - V. P. Tregubov AU - S. V. Rutkina TI - Mathematical modelling of pulsative blood flow in deformable arteries JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 158 EP - 164 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a7/ LA - en ID - VSPUI_2018_14_2_a7 ER -
%0 Journal Article %A V. P. Tregubov %A S. V. Rutkina %T Mathematical modelling of pulsative blood flow in deformable arteries %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 158-164 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a7/ %G en %F VSPUI_2018_14_2_a7
V. P. Tregubov; S. V. Rutkina. Mathematical modelling of pulsative blood flow in deformable arteries. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 158-164. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a7/
[1] Schmid-Schonbein H., “Rheological properties of human erythrocytes and their influence upon anomalous viscosity of blood”, Physiol. Rev., 63 (1971), 147–219
[2] Jung J., Lyczkowski R. W., Panchal C. B., Hassanein A., “Multiphase haemodynamics simulation of pulsative flow in a coronary artery”, J. Biomechanics, 39:20 (2006), 64–73
[3] Srivastava V. P., “Two-phase model of blood flow through stenosed tubes in the presence of a peripheral layer: applications”, J. Biomechanics, 29 (1996), 1377–1382 | DOI
[4] Gijsen F. G. H., Allanic E., Van De Vosse F. N., Janssen J. D., “The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 900 curved tube analysis”, J. Biomechanics, 32 (1999), 705–713 | DOI
[5] Baskurt O. K., Meiselman H. J., “Blood rheology and haemodynamics”, Seminars in thrombosis and hemostasis, 29:5 (2003), 435–450 | DOI
[6] Tregubov V. P., Zhukov N. K., “Computer simulation of the blood stream with availability of vessel pathologies”, Russian J. Biom., 2 (2017), 201–210
[7] Cho Y. I., Kensey K. R., “Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Pt. 1. Steady Flows”, Biorheology, 28 (1991), 241–262 | DOI
[8] Tokuda Y., Song M. H., Ueda Y., Usui A., Akita T., Yoneyama S., Maruyama S., “Three-dimensional numerical simulation of blood flow in the aortic arch during cardiopulmonary bypass”, Europ. J. Cardiothoracic Surgery, 33 (2008), 164–167 | DOI
[9] Numata S., Itatani K., Kanda K., Doi K., Yamazaki S., Morimoto K., Manabe K., Ikemoto K., Yaku H., “Blood flow analysis of the aortic arch using computational fluid dynamics”, Europ. J. Cardio-Thoracic Surgery, 49:6 (2016), 1–8 | DOI
[10] Tregubov V. P., “Mathematical modelling of the non-Newtonian blood flow in the aortic arc”, Computer Research and Modeling, 9:2 (2017), 259–269 | DOI
[11] Tregubov V., Mukhtarova D., “A model study of blood flow in branching vessels”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 13:1 (2017), 42–50 | MR
[12] Duta A., Tarbell J. M., “Influence of non-Newtonian behavior of blood on flow in elastic artery mofel”, J. Biomech. Eng., 118 (1996), 111–119 | DOI