Keywords: integral equations, mathematical modeling.
@article{VSPUI_2018_14_2_a4,
author = {S. V. Solodusha},
title = {Quadratic and cubic {Volterra} polynomials: identification and application},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {131--144},
year = {2018},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a4/}
}
TY - JOUR AU - S. V. Solodusha TI - Quadratic and cubic Volterra polynomials: identification and application JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 131 EP - 144 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a4/ LA - ru ID - VSPUI_2018_14_2_a4 ER -
%0 Journal Article %A S. V. Solodusha %T Quadratic and cubic Volterra polynomials: identification and application %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 131-144 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a4/ %G ru %F VSPUI_2018_14_2_a4
S. V. Solodusha. Quadratic and cubic Volterra polynomials: identification and application. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 131-144. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a4/
[1] Fujii K., Nakao K., “Identification of nonlinear dynamic systems without self-regulation using Volterra functional series”, Trans. Soc. Instr. Control Eng. (Japan), 7:2 (1971), 129–136
[2] Pavlenko V. D., “Compensation method for identification of nonlinear dynamic systems in the form of Volterra kernels”, Proceedings of the Odessa Polytechnic University, 2009, no. 2, 121–129 (In Russian)
[3] Masri M. M., Methods and tools for constructing information models of nonlinear dynamic objects for diagnostic purposes, PhD tech. sci. diss., Odessk. National Polytechnic University Publ., Odessa, 2015, 173 pp. (In Russian)
[4] Fomin A. A., Pavlenko V. D., Fedorova V. D., “Method for constructing the Volterra multidimensional model of the eyemovement apparatus”, Electrotechnical and Computer Systems, 2015, no. 19, 296–301 (In Russian)
[5] Apartsyn A. S., Nonclassical Volterra equations of the first kind in integral models of dynamical systems: theory, numerical methods, applications, Dr. phys.-math. sci. diss., Irkutsk. Gos. University, Irkutsk, 2000, 319 pp. (In Russian)
[6] Apartsyn A. S., “Mathematical modelling of the dynamic systems and objects with the help of the Volterra integral series”, EPRI-SEI Joint Seminar (Beijing, China, 1991), 117–132 | MR
[7] Solodusha S. V., “Numerical methods for identification of asymmetric Volterra kernels and their applications in heat power engineering”, Proceedings of the XXIV conference of young scientists SEI SB RAS (Irkutsk, 10–11.03.1994 g.), 76–91 (In Russian)
[8] Apartsyn A. S., Tairov E. A., Solodusha S. V., Khudyakov D. V., “Application of integro-power Volterra series to modeling the dynamics of heat exchangers”, Proceedings of the Russian Academy of Sciences. Power Engineering, 1994, no. 3, 138–145 (In Russian)
[9] Tairov E. A., “Nonlinear modeling of the dynamics of heat transfer in a channel with single phase coolant”, Proceedings of the Russian Academy of Sciences. Power Engineering and Transport, 1989, no. 1, 150–156 (In Russian)
[10] Solodusha S. V., Sidorov D. N., “On modelling of heat-exchange process nonlinear dynamics by functional Volterra series”, Proceedings of conference “Mathematical Modelling Tools” (Saint Petersburg, 3–6.12.1997), SPbGTU Publ., Saint Petersburg, 1998, 221–229 (In Russian)
[11] Apartsin A. S., Solodusha S. V., “Test signal amplitude optimization for identification of the Volterra kernels”, Automation and Remote Control, 65:3 (2004), 464–471 (In Russian) | DOI | MR | Zbl
[12] Solodusha S. V., “Numerical modeling of heat exchange dynamics by modified quadratic Volterra polynomial”, Computational Technologies, 18:2 (2013), 84–94 (In Russian)