Quadratic and cubic Volterra polynomials: identification and application
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 131-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Volterra kernels identification is the main problem in constructing an input-output type mathematical model of nonlinear dynamical system by a Volterra polynomial of $N$th order. Currently, various algorithms for solving this problem are proposed. Usually, it is assumed that the decomposition of the dynamical system response $y(t)$ into components is preliminarily performed. Each of components is due to the influence of the concrete integral term. In general, the separation problem is invariant with respect to a particular family of test actions, and the choice of amplitudes of the test signals used to identify the Volterra kernels is related to the necessary conditions for the solvability of the corresponding multidimensional integral equations in special classes of functions. In the present paper, existence theorems for solutions of two-dimensional and three-dimensional Volterra integral equations of the first kind are given. This result is obtained in terms of the amplitudes of the test signals. This will allow us to remove the arbitrariness in the choice of amplitudes in construction of the quadratic and cubic Volterra polynomials in the case when external action $x (t) = (x_1 (t), x_2 (t))^T$ is a vector function of time. Illustrative calculations are given through the dynamic reference systems.
Mots-clés : identification, Volterra kernels
Keywords: integral equations, mathematical modeling.
@article{VSPUI_2018_14_2_a4,
     author = {S. V. Solodusha},
     title = {Quadratic and cubic {Volterra} polynomials: identification and application},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {131--144},
     year = {2018},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a4/}
}
TY  - JOUR
AU  - S. V. Solodusha
TI  - Quadratic and cubic Volterra polynomials: identification and application
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 131
EP  - 144
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a4/
LA  - ru
ID  - VSPUI_2018_14_2_a4
ER  - 
%0 Journal Article
%A S. V. Solodusha
%T Quadratic and cubic Volterra polynomials: identification and application
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 131-144
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a4/
%G ru
%F VSPUI_2018_14_2_a4
S. V. Solodusha. Quadratic and cubic Volterra polynomials: identification and application. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 131-144. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a4/

[1] Fujii K., Nakao K., “Identification of nonlinear dynamic systems without self-regulation using Volterra functional series”, Trans. Soc. Instr. Control Eng. (Japan), 7:2 (1971), 129–136

[2] Pavlenko V. D., “Compensation method for identification of nonlinear dynamic systems in the form of Volterra kernels”, Proceedings of the Odessa Polytechnic University, 2009, no. 2, 121–129 (In Russian)

[3] Masri M. M., Methods and tools for constructing information models of nonlinear dynamic objects for diagnostic purposes, PhD tech. sci. diss., Odessk. National Polytechnic University Publ., Odessa, 2015, 173 pp. (In Russian)

[4] Fomin A. A., Pavlenko V. D., Fedorova V. D., “Method for constructing the Volterra multidimensional model of the eyemovement apparatus”, Electrotechnical and Computer Systems, 2015, no. 19, 296–301 (In Russian)

[5] Apartsyn A. S., Nonclassical Volterra equations of the first kind in integral models of dynamical systems: theory, numerical methods, applications, Dr. phys.-math. sci. diss., Irkutsk. Gos. University, Irkutsk, 2000, 319 pp. (In Russian)

[6] Apartsyn A. S., “Mathematical modelling of the dynamic systems and objects with the help of the Volterra integral series”, EPRI-SEI Joint Seminar (Beijing, China, 1991), 117–132 | MR

[7] Solodusha S. V., “Numerical methods for identification of asymmetric Volterra kernels and their applications in heat power engineering”, Proceedings of the XXIV conference of young scientists SEI SB RAS (Irkutsk, 10–11.03.1994 g.), 76–91 (In Russian)

[8] Apartsyn A. S., Tairov E. A., Solodusha S. V., Khudyakov D. V., “Application of integro-power Volterra series to modeling the dynamics of heat exchangers”, Proceedings of the Russian Academy of Sciences. Power Engineering, 1994, no. 3, 138–145 (In Russian)

[9] Tairov E. A., “Nonlinear modeling of the dynamics of heat transfer in a channel with single phase coolant”, Proceedings of the Russian Academy of Sciences. Power Engineering and Transport, 1989, no. 1, 150–156 (In Russian)

[10] Solodusha S. V., Sidorov D. N., “On modelling of heat-exchange process nonlinear dynamics by functional Volterra series”, Proceedings of conference “Mathematical Modelling Tools” (Saint Petersburg, 3–6.12.1997), SPbGTU Publ., Saint Petersburg, 1998, 221–229 (In Russian)

[11] Apartsin A. S., Solodusha S. V., “Test signal amplitude optimization for identification of the Volterra kernels”, Automation and Remote Control, 65:3 (2004), 464–471 (In Russian) | DOI | MR | Zbl

[12] Solodusha S. V., “Numerical modeling of heat exchange dynamics by modified quadratic Volterra polynomial”, Computational Technologies, 18:2 (2013), 84–94 (In Russian)