@article{VSPUI_2018_14_2_a3,
author = {P. V. Plotnikov and N. K. Krivulin},
title = {Direct solution of a minimax location problem on the plane},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {116--130},
year = {2018},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a3/}
}
TY - JOUR AU - P. V. Plotnikov AU - N. K. Krivulin TI - Direct solution of a minimax location problem on the plane JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 116 EP - 130 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a3/ LA - ru ID - VSPUI_2018_14_2_a3 ER -
%0 Journal Article %A P. V. Plotnikov %A N. K. Krivulin %T Direct solution of a minimax location problem on the plane %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 116-130 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a3/ %G ru %F VSPUI_2018_14_2_a3
P. V. Plotnikov; N. K. Krivulin. Direct solution of a minimax location problem on the plane. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 116-130. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a3/
[1] Baccelli F., Cohen G., Olsder G. J., Quadrat J.-P., Synchronization and linearity, Wiley Series in Probability and Statistics, Wiley, Chichester, 1993, 514 pp. | MR
[2] Maslov V. P., Kolokol'tsov V. N., Idempotent analysis and its applications in optimal control, Fizmatlit Publ., M., 1994, 144 pp. (In Russian)
[3] Cuninghame-Green R. A., Minimax algebra and applications, Advances in Imaging and Electron Physics, 90, ed. P. W. Hawkes, Academic Press, San Diego, 1994, 121 pp. | DOI
[4] Golan J. S., Semirings and affine equations over them, Mathematics and its Applications, 556, Springer, New York, 2003, 256 pp. | DOI | MR
[5] Heidergott B., Olsder G. J., van der Woude J., Max plus at work, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2006, 226 pp. | MR | Zbl
[6] McEneaney W. M., Max-plus methods for nonlinear control and estimation, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 2006, 241 pp. | DOI | MR | Zbl
[7] Itenberg I., Mikhalkin G., Shustin E. I., Tropical algebraic geometry, Oberwolfach Seminars, 35, Birkhäuser, Basel, 2007, 104 pp. | DOI | MR | Zbl
[8] Gondran M., Minoux M., Graphs, dioids and semirings, Operations Research/Computer Science Interfaces, 41, Springer, New York, 2008, 383 pp. | DOI | MR | Zbl
[9] Butkovič P., Max-linear systems, Springer Monographs in Mathematics, Springer, London, 2010, 272 pp. | DOI | MR | Zbl
[10] Krivulin N. K., “A multidimensional tropical optimization problem with nonlinear objective function and linear constraints”, Optimization, 64:5 (2015), 1107–1129 | DOI | MR | Zbl
[11] Krivulin N. K., “Algebraic solutions to multidimensional minimax location problems with Chebyshev distance”, Recent Researches in Applied and Computational Mathematics, Intern. conference on Applied and Computational Mathematics (ICACM'11), WSEAS, 2011, 157–162
[12] Krivulin N. K., “Algebraic solution to a constrained rectilinear minimax location problem on the plane”, 2011 Intern. conference on Multimedia Technology (ICMT), IEEE, 2011, 6216–6220 | DOI
[13] Krivulin N. K., “A new algebraic solution to multidimensional minimax location problems with Chebyshev distance”, WSEAS Transactions on Mathematics, 11:7 (2012), 605–614
[14] Krivulin N. K., “An extremal property of the eigenvalue of irreducible matrices in idempotent algebra and solution of the Rawls location problem”, Vestnik of Saint Petersburg University. Mathematics, 44:4 (2011), 272–281 | DOI | MR | Zbl
[15] Krivulin N. K., Plotnikov P. V., “On an algebraic solution of the Rawls location problem in the plane with rectilinear metric”, Vestnik of Saint Petersburg University. Mathematics, 48:2 (2015), 75–81 | DOI | MR | Zbl
[16] Elzinga J., Hearn D. W., “Geometrical solutions for some minimax location problems”, Transport. Sci., 6:4 (1972), 379–394 | DOI | MR
[17] Francis R. L., “A geometrical solution procedure for a rectilinear distance minimax location problem”, AIIE Trans., 4:4 (1972), 328–332 | DOI | MR
[18] Krivulin N. K., Plotnikov P. V., “Using tropical optimization to solve minimax location problems with rectilinear metric on the line”, Vestnik of Saint Petersburg University. Mathematics, 3(61):4 (2016), 602–614 | DOI | MR