@article{VSPUI_2018_14_2_a1,
author = {T. O. Domanskaya and V. M. Malkov and Yu. V. Malkova},
title = {Mathematical modeling of the deformation of composite plane with interface crack for semi-linear material},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {89--102},
year = {2018},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a1/}
}
TY - JOUR AU - T. O. Domanskaya AU - V. M. Malkov AU - Yu. V. Malkova TI - Mathematical modeling of the deformation of composite plane with interface crack for semi-linear material JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 89 EP - 102 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a1/ LA - ru ID - VSPUI_2018_14_2_a1 ER -
%0 Journal Article %A T. O. Domanskaya %A V. M. Malkov %A Yu. V. Malkova %T Mathematical modeling of the deformation of composite plane with interface crack for semi-linear material %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 89-102 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a1/ %G ru %F VSPUI_2018_14_2_a1
T. O. Domanskaya; V. M. Malkov; Yu. V. Malkova. Mathematical modeling of the deformation of composite plane with interface crack for semi-linear material. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 89-102. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a1/
[1] John F., “Plane strain problems for a perfectly elastic material of harmonic type”, Commun. Pure and Applied Mathematics, 13:2 (1960), 239–296 | DOI | MR | Zbl
[2] Lurie A. I., Non-linear elasticity, Nauka Publ., M., 1980, 512 pp. (In Russian)
[3] Chernykh K. F., Litvinenkova Z. N., Theory of large elastic deformations, Leningrad State University Publ., L., 1988, 256 pp. (In Russian)
[4] Zubov L. M., Nonlinear theory of dislocations and disclinations in elastic bodies, Springer, Berlin, 1997, 205 pp. | MR | Zbl
[5] Malkov V. M., Malkova Yu. V., “Plane problems of elasticity for semi-linear material”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2012, no. 3, 93–106 (In Russian)
[6] Malkov V. M., Malkova Yu. V., “Plane problems on concentrated forces for semi-linear material”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2013, no. 3, 83–96 (In Russian)
[7] Malkov V. M., Malkova Yu. V., Domanskaya T. O., “Analysis of stresses of bi-material plane and half-plane at action of a point force for two models of harmonic materials”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, no. 1, 38–52 (In Russian)
[8] Varley E., Cumberbatch E., “Finite deformation of elastic materials surrounding cylindrical holes”, Journal of Elasticity, 10:4 (1980), 341–405 | DOI | Zbl
[9] Ru C. Q., “On complex-variable formulation for finite plane elastostatics of harmonic materials”, Acta Mechanica, 156:3–4 (2002), 219–234 | Zbl
[10] Ru C. Q., Schiavone P., Sudak L. J., Mioduchowski A., “Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics”, Intern. Journal of Non-linear Mechanics, 38:2–3 (2005), 281–287 | MR
[11] Malkov V. M., Malkova Yu. V., “Plane problem of non-linear elasticity for harmonic material”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2008, no. 3, 114–126 (In Russian)
[12] Malkov V. M., Malkova Yu. V., “Modeling nonlinear deformation of a plate with an elliptic inclusion by John's harmonic material”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 4(62):1 (2017), 121–130 (In Russian) | DOI
[13] Mal'kov V. M., Mal'kova Yu. V., “Modeling nonlinear deformation of a plate with an elliptic inclusion by John's harmonic material”, Vestnik of Saint Petersburg University. Mathematics, 50:1 (2017), 74–81 | DOI | MR | Zbl
[14] Malkov V. M., Malkova Yu. V., Stepanova V. A., “Bi-material plane of John's material with interface crack loaded by pressure”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2013, no. 3, 113–125 (In Russian)
[15] Domanskaia T., Malkov V., Malkova Yu., “Bi-material plane of John's harmonic material with a point force at interface”, XXIV Intern. Congress of Theoretical and Applied Mechanics (ICTAM) (21–26 August 2016, Montreal, Canada), 2016, 1958–1959
[16] Domanskaya T. O., Malkov V. M., Malkova Yu. V., “Nonlinear problem for bi-material plate with interface crack for harmonic John's material”, 2nd International conference “Deformation and Failure of Composite Materials and Structures” (DFCMS-2016) (October 2016), Institute of Engineering RAS Publ., M., 2016, 33–35 (In Russian)
[17] Malkov V. M., Introduction to non-linear elasticity, Saint Petersburg State University Publ., Saint Petersburg, 2010, 276 pp. (In Russian)
[18] Malkova Yu. V., Some problems for bi-material plane with curvilinear cracks, Saint Petersburg State University Publ., Saint Petersburg, 2008, 160 pp. (In Russian); Ито Ю. и др., Справочник по коэффициентам интенсивности напряжений, в 2-х т., ред. Ю. Мураками, ред. Р. В. Гольдштейн, Н. А. Махутов, Мир, М., 1990, 1014 с.
[19] Ito Yu. et all., Stress intensity factors handbook, In 2 vol., Oxford University Press, Oxford etc., 1985–1986