On the diagonal stability of some classes of complex systems
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 72-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the problem of diagonal stability of nonlinear difference-differential systems. Certain classes of complex systems with delay and nonlinearities of a sector type are studied. It is assumed that these systems describe the interaction of two-dimensional blockswith a delay in connections between the blocks. Two kinds of structure of connections are investigated. For every kind, necessary and sufficient conditions for the existence of diagonal Lyapunov–Krasovskii functionals are found. The existence of such functionals guarantees the asymptotic stability of the zero solutions of considered systems for any nonnegative delay and any admissible nonlinearities. These conditions are formulated in terms of the Hurwitz property of specially constructed Metzler matrices. The proposed approaches are used for the stability analysis ofsome models of population dynamics. Generalized Lotka–Volterra models composed of several interacting pairs of predator-prey type are investigated. With the aid of the Lyapunov direct method and diagonal Lyapunov–Krasovskii functionals, conditions are derived under which equilibrium positions of the considered models are globally asymptotically stable in the positive orthant of the state space for any nonnegative delay. An illustrative example and results of the numerical simulation are presented to demonstrate the effectiveness of the developed approaches.
Keywords: diagonal stability, complex system, delay, population dynamics, Lyapunov–Krasovskii functional.
@article{VSPUI_2018_14_2_a0,
     author = {A. Yu. Aleksandrov and A. A. Vorob'eva and E. P. Kolpak},
     title = {On the diagonal stability of some classes of complex systems},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {72--88},
     year = {2018},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a0/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
AU  - A. A. Vorob'eva
AU  - E. P. Kolpak
TI  - On the diagonal stability of some classes of complex systems
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 72
EP  - 88
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a0/
LA  - ru
ID  - VSPUI_2018_14_2_a0
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%A A. A. Vorob'eva
%A E. P. Kolpak
%T On the diagonal stability of some classes of complex systems
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 72-88
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a0/
%G ru
%F VSPUI_2018_14_2_a0
A. Yu. Aleksandrov; A. A. Vorob'eva; E. P. Kolpak. On the diagonal stability of some classes of complex systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 2, pp. 72-88. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_2_a0/

[1] Kaszkurewicz E., Bhaya A., Matrix diagonal stability in systems and computation, Birkhauser, Boston–Basel–Berlin, 1999, 267 pp. | MR

[2] Pykh Yu. A., Equilibrium and stability in models of population dynamics, Nauka Publ., M., 1983, 182 pp. (In Russian)

[3] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical sciences, SIAM, Philadelphia, 1987, 361 pp. | MR

[4] Barker G. P., Berman A., Plemmons R. J., “Positive diagonal solutions to the Lyapunov equations”, Linear and Multilinear Algebra, 5:4 (1978), 249–256 | DOI | MR | Zbl

[5] A. A. Voronov, V. M. Matrosov (red.), Method of vector Lyapunov functions in stability theory, Nauka Publ., M., 1987, 312 pp. (In Russian)

[6] Sontag E. D., “Passivity gains and the “secant condition” for stability”, Systems and Control Letters, 55 (2006), 177–183 | DOI | MR | Zbl

[7] Podval'nyi S. L., Provotorov V. V., “Start control of a parabolic system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 3, 126–142 (In Russian)

[8] Provotorov V. V., Ryazhskikh V. I., Gnilitskaya Yu. A., “Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 (In Russian) | DOI | MR

[9] Hofbauer J., Sigmund K., Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998, 323 pp. | MR | Zbl

[10] Aleksandrov A. Yu., Aleksandrova E. B., Platonov A. V., “Ultimate boundedness conditions for a hybrid model of population dynamics”, Proc. 21st Mediterranean conference on Control and Automation (June 25–28, 2013, Platanias-Chania, Crite, Greece), 2013, 622–627 | DOI

[11] Shorten R., Narenda K. S., “On the diagonal stability of a class of almost positive switched systems”, Proc. American Control Conference (June 30—July 02, 2010, Marriott Waterfront, Baltimore, MD, USA), 2010, 6250–6255

[12] Arcat M., Sontag E., “Diagonal stability of a class of cyclic systems and its connection with the secant criterion”, Automatica, 42:9 (2006), 1531–1537 | DOI | MR

[13] Mason O., Shorten R., “On the simultaneous diagonal stability of a pair of positive linear systems”, Linear Algebra and its Applications, 413 (2006), 13–23 | DOI | MR | Zbl

[14] Aleksandrov A., Mason O., “Diagonal stability of a class of discrete-time positive switched systems with delay”, IET Control Theory Applications, 12:6 (2018), 812–818 | DOI | MR

[15] Shorten R., Narendra K., “On a theorem of Redheffer concerning diagonal stability”, Linear Algebra and its Applications, 431 (2009), 2317–2329 | DOI | MR | Zbl

[16] Kraaijevanger J. F. B., “A characterisation of Lyapunov diagonal stability using Hadamard products”, Linear Algebra and its Applications, 151 (1991), 245–254 | DOI | MR | Zbl

[17] Aleksandrov A. Yu., “On the absolute stability of a nonlinear system of differential equations”, Proc. of All-Russian scientific conference “Mathematical Modeling and Boundary-Value Problems” (Samara, May 26–28, 2004), v. 3, SamGU Publ., Samara, 2004, 13–15 (In Russian)

[18] Mason O., “Diagonal Riccati stability and positive time-delay systems”, Systems and Control Letters, 61 (2012), 6–10 | DOI | MR | Zbl

[19] Aleksandrov A., Mason O., “Diagonal Riccati stability and applications”, Linear Algebra and its Applications, 492 (2016), 38–51 | DOI | MR | Zbl

[20] Aleksandrov A., Mason O., Vorob'eva A., “Diagonal Riccati stability and the Hadamard product”, Linear Algebra and its Applications, 534 (2017), 158–173 | DOI | MR | Zbl

[21] Aleksandrov A., Vorob'eva A., “Construction of Lyapunov-Krasovskii functionals for a class of nonlinear systems with delay”, Control Processes and Stability, 2(18):1 (2015), 17–22 (In Russian)

[22] Krasovskii N. N., “On the application of the second Lyapunov method for equations with time delay”, Applied Mathematics and Mechanics, 20:3 (1956), 315–327 (In Russian)

[23] Mishina A. P., Proskuryakov I. V., Higher algebra, Nauka Publ., M., 1965, 300 pp. (In Russian)

[24] Britton N. F., Essential mathematical biology, Springer, London–Berlin–Heidelberg, 2003, 335 pp. | MR | Zbl

[25] Hale J. K., Verduyn Lunel S. M., Introduction to functional differential equations, Springer-Verlag, New York, 1993, 458 pp. | MR | Zbl

[26] Argunov A. V., Safronov V. M., “Demographic structure of siberian roe deer (Capreolus pygargus pall.) population in central Yakutia”, Russian Journal of Ecology, 44:5 (2013), 402–407 | DOI

[27] Gallagher B. K., Secor D. H., “Intensified environmental and density-dependent regulation of white perch recruitment after an ecosystem shift in the Hudson river estuary”, Canadian Journal of Fisheries and Aquatic Sciences, 75:1 (2018), 36–46 | DOI

[28] Novikov E. A., Panov V. V., Moshkin M. P., “Density-dependent regulation in populations of red-backed voles (Myodes rutilus) in optimal and suboptimal habitats of south-west Siberia”, Biology Bulletin Reviews, 73:1 (2012), 49–58

[29] Volkov S. V., Sharikov A. V., Basova V. B., Grinchenko O. S., “Influence of small mammals abundance on the number and selection of habitats by long-eared (Asio otus) and short-eared (Asio flammeus) owls”, Entomological Review, 88:10 (2009), 1248–1257

[30] Kozhechkin V. V., Kel'berg G. V., “Influence of the wolf on the change in the structure of the maral population (Cevus tlaphus sibiricus sev) in the territory of the Stolby reserve”, Proceedings of the Tigirek Reserve, 2005, no. 1, 307–310 (In Russian)

[31] Sheremetev I. S., Rozenfeld S. B., Sipko T. P., Gruzdev A. R., “Extinction of large herbivore mammals: niche characteristics of musk ox Ovibos moschatus and reindeer Rangifer tarandus coexisting in isolation”, Biology Bulletin Reviews, 75:1 (2014), 62–73