L. S. Pontryagin maximum principle for some optimal control problems by trajectories pencils
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 1, pp. 59-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider some optimal problems for pencils of trajectories of nonlinear control systems, when integral functional of general type is minimized. For these problems an initial state of control system belongs to some compact set with positive Lebesgue measure. Such control systems are connected, for example, with study of control pencils of charged particles in physics (D. A. Ovsyannikov and other) and in problems of control when initial state of control system is known with error. An importance problem in this field is proof of Pontryagin's maximum principle. In the paper we continue research of Ovsyannikov on this problem. We have proved the Pontryagin's maximum principle for the case of integral functional and instantaneous geometric restrictions on control for Lebesgue measured control functions (previously piecewise continuous control functions were considered in literature). We used classical techniques of variations for measured optimal control function with some modifications. We note that our form of Pontryagin's maximum principle is distinguished from some another forms. In the end of our paper there is a remark of D. A. Ovsyannikov about the connections of different forms of Pontryagn's principle maximum. As some illustration, we consider a control object with linear dynamics. For this case our maximum principle can be written in more simple form than in general nonlinear case. Refs 8.
Keywords: control object, pencils of trajectories, maximum principle.
@article{VSPUI_2018_14_1_a6,
     author = {M. S. Nikolskii and E. A. Belyaevskikh},
     title = {L. {S.} {Pontryagin} maximum principle for some optimal control problems by trajectories pencils},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {59--68},
     year = {2018},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a6/}
}
TY  - JOUR
AU  - M. S. Nikolskii
AU  - E. A. Belyaevskikh
TI  - L. S. Pontryagin maximum principle for some optimal control problems by trajectories pencils
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 59
EP  - 68
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a6/
LA  - ru
ID  - VSPUI_2018_14_1_a6
ER  - 
%0 Journal Article
%A M. S. Nikolskii
%A E. A. Belyaevskikh
%T L. S. Pontryagin maximum principle for some optimal control problems by trajectories pencils
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 59-68
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a6/
%G ru
%F VSPUI_2018_14_1_a6
M. S. Nikolskii; E. A. Belyaevskikh. L. S. Pontryagin maximum principle for some optimal control problems by trajectories pencils. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a6/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Mathematical theory of optimal processes, Nauka Publ., M., 1969, 384 pp. (In Russian)

[2] Lee E. B., Markus L., Foundation of optimal control theory, Krieger Publ. Co., Malabar, FL, 1986, 586 pp. | MR

[3] Filippov A. F., “About some problems of automatic control”, Vestnik of Moscow University. Series 1. Mathematics and mechanics, 1959, no. 2, 25–38 (In Russian)

[4] Ovsyannikov D. A., Mathematical methods of pencils control, Leningrad State University Publ., Leningrad, 1980, 228 pp. (In Russian)

[5] Nikolskii S. M., A course of mathematical analysis, In 2 vol., v. II, Fizmathlit Publ., M., 2001, 592 pp. (In Russian)

[6] Hartman F., Ordinary differential equation, John Wiley Sons, London, 1964, 612 pp. | MR

[7] Gantmaher F. R., Theory of matrich, 2nd ed., Nauka Publ., M., 1966, 576 pp. (In Russian)

[8] Nikolskii M. S., Belyaevskikh E. A., “Existence theorems of optimal control for some problems of control by pencils of trajectories”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:1 (2017), 113–118 (In Russian)