@article{VSPUI_2018_14_1_a6,
author = {M. S. Nikolskii and E. A. Belyaevskikh},
title = {L. {S.} {Pontryagin} maximum principle for some optimal control problems by trajectories pencils},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {59--68},
year = {2018},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a6/}
}
TY - JOUR AU - M. S. Nikolskii AU - E. A. Belyaevskikh TI - L. S. Pontryagin maximum principle for some optimal control problems by trajectories pencils JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 59 EP - 68 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a6/ LA - ru ID - VSPUI_2018_14_1_a6 ER -
%0 Journal Article %A M. S. Nikolskii %A E. A. Belyaevskikh %T L. S. Pontryagin maximum principle for some optimal control problems by trajectories pencils %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 59-68 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a6/ %G ru %F VSPUI_2018_14_1_a6
M. S. Nikolskii; E. A. Belyaevskikh. L. S. Pontryagin maximum principle for some optimal control problems by trajectories pencils. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a6/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Mathematical theory of optimal processes, Nauka Publ., M., 1969, 384 pp. (In Russian)
[2] Lee E. B., Markus L., Foundation of optimal control theory, Krieger Publ. Co., Malabar, FL, 1986, 586 pp. | MR
[3] Filippov A. F., “About some problems of automatic control”, Vestnik of Moscow University. Series 1. Mathematics and mechanics, 1959, no. 2, 25–38 (In Russian)
[4] Ovsyannikov D. A., Mathematical methods of pencils control, Leningrad State University Publ., Leningrad, 1980, 228 pp. (In Russian)
[5] Nikolskii S. M., A course of mathematical analysis, In 2 vol., v. II, Fizmathlit Publ., M., 2001, 592 pp. (In Russian)
[6] Hartman F., Ordinary differential equation, John Wiley Sons, London, 1964, 612 pp. | MR
[7] Gantmaher F. R., Theory of matrich, 2nd ed., Nauka Publ., M., 1966, 576 pp. (In Russian)
[8] Nikolskii M. S., Belyaevskikh E. A., “Existence theorems of optimal control for some problems of control by pencils of trajectories”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:1 (2017), 113–118 (In Russian)