@article{VSPUI_2018_14_1_a4,
author = {V. M. Bure and A. N. Elfimov and V. V. Karelin},
title = {Stationary cycles in a deterministic service system},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {40--50},
year = {2018},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a4/}
}
TY - JOUR AU - V. M. Bure AU - A. N. Elfimov AU - V. V. Karelin TI - Stationary cycles in a deterministic service system JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 40 EP - 50 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a4/ LA - ru ID - VSPUI_2018_14_1_a4 ER -
%0 Journal Article %A V. M. Bure %A A. N. Elfimov %A V. V. Karelin %T Stationary cycles in a deterministic service system %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 40-50 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a4/ %G ru %F VSPUI_2018_14_1_a4
V. M. Bure; A. N. Elfimov; V. V. Karelin. Stationary cycles in a deterministic service system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 1, pp. 40-50. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a4/
[1] Ivchenko G. I., Kashtanov V. A., Kovalenko I. N., Queuing theory, Vishaya shkola Publ., M., 1982, 256 pp. (In Russian)
[2] Gazis D., Traffic theory, Kluwer Academic Publ., Kluwer, MA, 2002, 259 pp. | MR | Zbl
[3] Haddad J., De Schutter B., Mahalel V. et al., “Optimal steady-state control for isolated traffic intersections”, IEEE Transactions on Automatic Control, 55:11 (2010), 2612–2617 | DOI | MR | Zbl
[4] Haddad J., Mahalel D., Ioslovich I., Gutman P.-O., “Constrained optimal steady-state control for isolated traffic intersections”, Control Theory Tech., 12:1 (2014), 84–94 | DOI | MR | Zbl
[5] Elfimov A. N., “Control problem of service system with two queuing”, Control Processes and Stability, 2:1 (2015), 605–611 (In Russian)
[6] Bure V. M., Karelin V. V., Elfimov A. N., “On one control problem of a deterministic service system”, Vestnik of Saint Peterburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 4, 100–112 (In Russian)
[7] Karelin V. V., Bure V. M., Polyakova L. N., Elfimov A. N., “Control problem of a deterministic queuing system”, Applied Mathematical Sciences, 10:21–24 (2016), 1023–1030 | DOI
[8] Karelin V., Bure V., Elfimov A., “Deterministic queuing system”, Proceedings VIII Moscow Intern. Conference on Operations Research, v. 1, 2016, 93–96
[9] Elfimov A. N., Bure V. M., “On the existence of stationary cycles in a deterministic service system with a constraint on the length of a cycle”, Control Processes and Stability, 3:1 (2016), 633–637 (In Russian)
[10] Polyakova L. N., Karelin V. V., Bure V. M., Chitrov G. M., “Exact penalty functions in the control problem of one queuing system”, Vestnik of Saint Peterburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 1, 73–81 (In Russian)
[11] Yakushev V. P., Karelin V. V., Bure V. M., Parilina E. M., “Soil acidity adaptive control problem”, Stochastic Enviromental Research and Risk Assessment, 29:6 (2015), 1671–1677 | DOI | MR
[12] Chernikov S. N., Linear inequalities, Nauka Publ., M., 1968, 488 pp. (In Russian)