@article{VSPUI_2018_14_1_a2,
author = {J. Grzybowski and D. Pallaschke and R. Urba\'nski},
title = {The quasidifferential calculus, separation of convex sets and the {Demyanov} difference},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {20--30},
year = {2018},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a2/}
}
TY - JOUR AU - J. Grzybowski AU - D. Pallaschke AU - R. Urbański TI - The quasidifferential calculus, separation of convex sets and the Demyanov difference JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2018 SP - 20 EP - 30 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a2/ LA - en ID - VSPUI_2018_14_1_a2 ER -
%0 Journal Article %A J. Grzybowski %A D. Pallaschke %A R. Urbański %T The quasidifferential calculus, separation of convex sets and the Demyanov difference %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2018 %P 20-30 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a2/ %G en %F VSPUI_2018_14_1_a2
J. Grzybowski; D. Pallaschke; R. Urbański. The quasidifferential calculus, separation of convex sets and the Demyanov difference. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 1, pp. 20-30. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a2/
[1] Demyanov V. F., Rubinov A. M., “Quasidifferentiable functionals”, Papers of Academy of Sciences USSR, 250:1 (1980), 21–25 (In Russian) | MR | Zbl
[2] Demyanov V. F., Rubinov A. M., Quasidifferential calculus, Optimization Software Inc. Publ. Division, New York, 1986, 288 pp. | MR | Zbl
[3] Grzybowski J., Pallaschke D., Urbański R., “A pre-classification and the separation law for closed bounded convex sets”, Optimization Methods and Software, 20 (2005), 219–229 | DOI | MR | Zbl
[4] Grzybowski J., Pallaschke D., Urbański R., “Demyanov difference in infinite dimensional spaces”, Proceedings of CNSA (Saint Petersburg, 2014), Springer Optim. Appl., 87, 2014, 13–24 | MR | Zbl
[5] Pallaschke D., Urbański R., “Pairs of compact convex sets — Fractional arithmetic with convex sets”, Mathematics and its Applications, 548 (2002), 487–496 | MR
[6] Pallaschke D., Rolewicz S., “Foundations of mathematical optimization”, Mathematics and its Applications, 426 (1997), 417–429 | MR
[7] Diamond P., Kloeden P., Rubinov A. M., Vladimirov A., “Comperative properties of three metrics in the space of compact convex sets”, Set-Valued Analysis, 5:3 (1997), 267–289 | DOI | MR | Zbl
[8] Hörmander L., “On the function of support sets convex in a space that is locally convex”, Archives for Mathematics, 3 (1954), 181–186
[9] Pinsker A. G., “The space of convex sets of a locally convex space”, Trudy Leningrad Engineering-Economic Institute, 63, 1966, 13–17 | MR
[10] Rubinov A. M., “Abstract convexity, global optimization and data classification”, Opsearch, 38 (2001), 247–265 | DOI | MR | Zbl
[11] Urbański R., “A generalization of the Minkowski—Rådström—Hörmander theorem”, Bull. Acad. Polon. Sci. Series Sci. Math. Astr. Phys., 24 (1976), 709–715 | MR | Zbl
[12] Rubinov A. M., Akhundov I. S., “Differences of compact sets in the sense of Demyanov and its application to non-smooth-analysis”, Optimization, 23 (1992), 179–189 | DOI | MR
[13] Clarke F. H., Optimization and Nonsmooth Analysis, J. Wiley Comp. Publ., New York, 1983, 306 pp. | MR | Zbl
[14] Husain T., Tweddle I., “On the extreme points of the sum of two compact convex sets”, Math. Ann., 188 (1970), 113–122 | DOI | MR | Zbl
[15] Gaudioso M., Gorgone E., Pallaschke D., “Separation of convex sets by Clarke subdifferential”, Optimization, 59 (2011), 1199–1210 | DOI | MR