Beam dynamics optimization in a linear accelerator
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 1, pp. 4-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the problems of optimization of the charged particles' beam dynamics in accelerators. The increasing requirements to the output parameters of the accelerated particles call for the development of new methods and approaches in the field of beam control for charged particles. The present paper considers and sets out particular tasks of optimization of the longitudinal motion of the charged particles in an RFQ accelerator. The particles' dynamics is considered in the accelerating field of an equivalent travelling wave. As was shown earlier, that approach allows one to consider the longitudinal motion and the transverse motion separately. Besides, certain requirements for transverse motion can be considered in the study of the longitudinal motion, which facilitates further optimization of the transverse dynamics. Particular quality functionals are specified and explained in the article. What distinguishes the present work is that it considers non-smooth functionals in combination with smooth functionals, taking the particles distribution density along the beam of trajectories into consideration. The mathematical model of simultaneous optimization of smooth and non-smooth functionals is considered. The variation of the combined functional is obtained as well as the necessary optimality condition. It should be noted that the considered approach might be applied to the control problems in case of partial information about the initial conditions, i. e. the problems of control of the beam of trajectories of various dynamic systems. Refs 15. Figs 4.
Keywords: control, optimization, minimax, linear accelerator.
@article{VSPUI_2018_14_1_a0,
     author = {M. Yu. Balabanov and M. A. Mizintseva and D. A. Ovsyannikov},
     title = {Beam dynamics optimization in a linear accelerator},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {4--13},
     year = {2018},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a0/}
}
TY  - JOUR
AU  - M. Yu. Balabanov
AU  - M. A. Mizintseva
AU  - D. A. Ovsyannikov
TI  - Beam dynamics optimization in a linear accelerator
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2018
SP  - 4
EP  - 13
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a0/
LA  - en
ID  - VSPUI_2018_14_1_a0
ER  - 
%0 Journal Article
%A M. Yu. Balabanov
%A M. A. Mizintseva
%A D. A. Ovsyannikov
%T Beam dynamics optimization in a linear accelerator
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2018
%P 4-13
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a0/
%G en
%F VSPUI_2018_14_1_a0
M. Yu. Balabanov; M. A. Mizintseva; D. A. Ovsyannikov. Beam dynamics optimization in a linear accelerator. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 14 (2018) no. 1, pp. 4-13. http://geodesic.mathdoc.fr/item/VSPUI_2018_14_1_a0/

[1] Alsevich V. V., “Minimization of the non-smooth functions on the terminal set of positions of a dynamic system”, Differential Equations, 10:2 (1974), 349–350 (In Russian) | MR

[2] Ananyina T. F., “The problem of control with uncertain data”, Differential Equations, 12:4 (1976), 612–620 (In Russian)

[3] Bondarev B. I., Durkin A. P., Ovsyannikov A. D., “New mathematical optimization models for RFQ structures”, Proceedings of the 18th Particle Accelerator Conference (New York, USA, 1999), 2808–2810

[4] Demyanov V. F., Vinogradova T. K., “On the minimax principle in optimal control problems”, Papers of Russian Academy of Sciences, 213:3 (1973), 512 | MR | Zbl

[5] Kurzhanski A. B., Control and observation in case of uncertainty, Fizmatlit Publ., M., 1977, 392 pp. (In Russian) | MR

[6] Ovsyannikov D. A., “Modeling and optimization problems of charged particle beam dynamics”, Proceedings of the 4th European Control Conference (Brussels, Belgium, 1997), 1463–1467 | MR

[7] Ovsyannikov D. A., Modeling and optimization of charged particle beam dynamics, Leningrad State University Publ., Leningrad, 1990, 312 pp. (In Russian) | MR

[8] Ovsyannikov D. A., “Mathematical modeling and optimization of beam dynamics in accelerators”, Proceedings of the 23rd Russian Particle Accelerator Conference, RuPAC 2012 (Saint Petersburg, Russia, 2012), 68–72

[9] Ovsyannikov A. D., Ovsyannikov D. A., Altsybeev V. V., Durkin A. P., Papkovich V. G., “Application of optimization techniques for RFQ design”, Problems of Atomic Science and Technology, 3 (2014), 116–119

[10] Mizintseva M., Ovsyannikov D., “On the problem of simultaneous optimization of program and disturbed motions”, Proceedings of SCP 2015 Conference (Saint Petersburg, Russia, 2015), 195–196

[11] Mizintseva M., Ovsyannikov D., “On the minimax problem of beam dynamics optimization”, Proceedings of the 27th Russian Particle Accelerator Conference, RuPAC 2016 (Saint Petersburg, Russia, 2016), 360–362 | MR

[12] Kapchinsky I. M., Theory of resonance linear accelerators, Energoizdat Publ., M., 1982, 398 pp. (In Russian)

[13] Ovsyannikov D. A., Ovsyannikov A. D., Vorogushin M. F., Svistunov Yu. A., Durkin A. P., “Beam dynamics optimization: models, methods and applications”, Nuclear Instruments and Methods in Physics Research, Section A, 558 (2006), 11–18 | DOI | MR

[14] Ovsyannikov A. D., Ovsyannikov D. A., Balabanov M. Yu., Chung S.-L., “On the beam dynamics optimization problem”, Intern. Journal of Modern Physics A, 24:5 (2009), 941–951 | DOI

[15] Ovsyannikov A. D., “Control of program and disturbed motions”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Informatics. Control Processes, 2006, no. 2, 111–124