Optimal control of the linearized Navier–Stokes system in a netlike domain
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 431-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is a natural extension of research into optimal control problems of evolution equations with distributed parameters on a geometrical graph (network) of one of the authors in the direction of increasing the dimension of a spatial variable and the functions describing the state of the study of the Navier–Stokes equations. At the same time is examined a simple case of the absence of convective effect (laminar flow of an incompressible viscous fluid) — linearized system of Navier–Stokes equations in a net-like domain. It proves unique solvability of the initial boundary value problem in the weak formulation which is based on the Faedo–Galerkin method using a special basis (the set of generalized eigenfunctions of the special spectral problem) and a priori estimates of norms solutions such as power inequalities. The proof is constructive: to construct a sequence of approximate solutions that converges weakly to the exact solution of the problem. Problems are analyzed with distributed and a start control with a final observation, widespread in applications, that provides the necessary and sufficient conditions for the existence of optimal controls in terms of the conjugate states of the respective systems. Sufficient attention is paid to the synthesis of the optimal control action, and analogues of established finite-dimensional case for Kalman results have been obtained. Although, the use of this method is demonstrated by examples of optimal control theory, this method has a highly susceptible to generalization and applicable to a wide class of linear problems. Refs 15.
Keywords: linearized Navier–Stokes system, net like domain, weak solutions, optimal control, control synthesis.
@article{VSPUI_2017_13_4_a8,
     author = {V. V. Provotorov and E. N. Provotorova},
     title = {Optimal control of the linearized {Navier{\textendash}Stokes} system in a netlike domain},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {431--443},
     year = {2017},
     volume = {13},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a8/}
}
TY  - JOUR
AU  - V. V. Provotorov
AU  - E. N. Provotorova
TI  - Optimal control of the linearized Navier–Stokes system in a netlike domain
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 431
EP  - 443
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a8/
LA  - en
ID  - VSPUI_2017_13_4_a8
ER  - 
%0 Journal Article
%A V. V. Provotorov
%A E. N. Provotorova
%T Optimal control of the linearized Navier–Stokes system in a netlike domain
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 431-443
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a8/
%G en
%F VSPUI_2017_13_4_a8
V. V. Provotorov; E. N. Provotorova. Optimal control of the linearized Navier–Stokes system in a netlike domain. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 431-443. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a8/

[1] Lions J.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir Publ., M., 1972, 587 pp. | MR | MR

[2] Provotorov V. V., Gnilitskaya Yu. A., “Boundary control of a wave system in the space of generalized solutions on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2013, no. 3, 112–120

[3] Provotorov V. V., “Optimal control of a parabolic system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 3, 154–163 | MR

[4] Podvalny S. L., Provotorov V. V., “Starting control of a parabolic system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 3, 126–142 | MR

[5] Podvalny S. L., Provotorov V. V., “The questions of controllability of a parabolic systems with distributed parameters on the graph”, 2015 Intern. Conference “Stability and Control Processes” in memory of V. I. Zubov (SCP) (2015), 117–119

[6] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka Publ., M., 1973, 407 pp. (In Russian) | MR

[7] Volkova A. S., Provotorov V. V., “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Russian Mathematics (Proceeding of Higher Educational Institutions), 58:3 (2014), 1–13 | MR | Zbl

[8] Fursikov A.V., Optimal control of distributed systems. Theory and applications, Nauchnaya kniga Publ., Novosibirsk, 1999, 352 pp. (In Russian) | Zbl

[9] Aleksandrov A. Yu., Zhabko A. P., “On the asymptotic stability of solutions of nonlinear systems with delay”, Siberian Mathematical Journal, 53:3 (2012), 393–403 | DOI | MR | Zbl

[10] Aleksandrov A., Aleksandrova E., Zhabko A., “Asymptotic stability conditions for certain classes of mechanical systems with time delay”, WSEAS Transactions on Systems and Control, 9 (2014), 388–397 | MR

[11] Aleksandrov A. Yu., Zhabko A. P., “On stability of the solutions of a class of nonlinear delay systems”, Autom. Remote Control, 67:9 (2006), 1355–1365 | DOI | MR | Zbl

[12] Veremey E. I., Korchanov V. M., “Multiobjective stabilization of the dynamic systems from a certain class”, Avtomatics and Telemechanics, 1988, no. 9, 126–137 | MR

[13] Veremey E. I., Sotnikova M. V., “Plasma stabilization by prediction with stable linear approximation”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 1, 116–133

[14] Karelin V. V., “Penalty functions in the control problem of an observation process”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 4, 109–114

[15] Kamachkin A. M., Yevstafyeva V. V., “Oscillations in a relay control system at an external disturbance”, Control Applications of Optimization 2000, Proceedings of the 11th IFAC Workshop, v. 2, 2000, 459–462