@article{VSPUI_2017_13_4_a6,
author = {M. Gomez and A. V. Egorov and S. Mondi\'e},
title = {A {Lyapunov} matrix based stability criterion for a class of time-delay systems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {407--416},
year = {2017},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a6/}
}
TY - JOUR AU - M. Gomez AU - A. V. Egorov AU - S. Mondié TI - A Lyapunov matrix based stability criterion for a class of time-delay systems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2017 SP - 407 EP - 416 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a6/ LA - en ID - VSPUI_2017_13_4_a6 ER -
%0 Journal Article %A M. Gomez %A A. V. Egorov %A S. Mondié %T A Lyapunov matrix based stability criterion for a class of time-delay systems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2017 %P 407-416 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a6/ %G en %F VSPUI_2017_13_4_a6
M. Gomez; A. V. Egorov; S. Mondié. A Lyapunov matrix based stability criterion for a class of time-delay systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 407-416. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a6/
[1] Krasovskii N. N., “On the application of the second method of Lyapunov for equations with time delays”, Applied Mathematics and Mechanics, 20 (1956), 315–327 (In Russian) | MR
[2] Datko R., “An algorithm for computing Lyapunov functionals for some differential difference equations”, Ordinary Differential Equations, ed. L. Weiss, Academic Press, New York, 1972, 387–398 | DOI | MR
[3] Infante E. F., Castelan W. B., “A Liapunov functional for a matrix difference-differential equation”, Journal of Differential Equations, 29 (1978), 439–451 | DOI | MR | Zbl
[4] Huang W., “Generalization of Liapunov's theorem in a linear delay systems”, Journal of Mathematical Analysis and Applications, 142 (1989), 83–94 | DOI | MR | Zbl
[5] Kharitonov V. L., Zhabko A. P., “Lyapunov–Krasovskii approach to the robust stability analysis of time-delay systems”, Automatica, 39:1 (2003), 15–20 | DOI | MR | Zbl
[6] Kharitonov V. L., Time-delay systems. Lyapunov functionals and matrices, Birkhäuser Press, Basel, 2013, 311 pp. | MR | Zbl
[7] Egorov A. V., Mondié S., “Necessary stability conditions for linear delay systems”, Automatica, 50:12 (2014), 3204–3208 | DOI | MR | Zbl
[8] Cuvas C., Mondié S., “Necessary stability conditions for delay systems with multiple pointwise and distributed delays”, IEEE Transactions on Automatic Control, 61:7 (2016), 1987–1994 | DOI | MR | Zbl
[9] Gomez M. A., Egorov A. V., Mondié S., “Necessary stability conditions for neutral type systems with a single delay”, IEEE Transactions on Automatic Control, 62:9 (2016), 4691–4697 | DOI | MR
[10] Mondié S., “Assessing the exact stability region of the single-delay scalar equation via its Lyapunov function”, IMA Journal of Mathematical Control and Information, 29:4 (2012), 459–470 | DOI | MR | Zbl
[11] Egorov A. V., “A stability criterion for the neutral type time-delay equation”, 2016 Intern. Conference on “Stability and Oscillations of Nonlinear Control Systems” (Moscow, Russia, V. A. Trapeznikov Institute of Control Sciences, 2016), 1–4 | MR
[12] Egorov A. V., “A new necessary and sufficient stability condition for linear time-delay systems”, 19th IFAC Workshop on Time Delay Systems (Cape Town, South Africa, 2014), 11018–11023
[13] Egorov A. V., Cuvas C., Mondié S., “Necessary and sufficient stability conditions for linear systems with pointwise and distributed delays”, Automatica, 80 (2017), 218–224 | DOI | MR | Zbl
[14] Egorov A. V., “A finite necessary and sufficient stability condition for linear retarded type systems”, Conference on Decision and Control (Las Vegas, USA, 2016), 3155–3160
[15] Medvedeva I. V., Zhabko A. P., “Synthesis of Razumikhin and Lyapunov–Krasovskii approaches to stability analysis of time-delay systems”, Automatica, 51 (2015), 372–377 | DOI | MR | Zbl