Single hub location-allocation problem under robustness clustering concept
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 398-406 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents an algorithm of hub number $p$ robustness estimation using specific simulations in the single allocation hub location problem. The simulation has to model the service demand trends in each origin node to each destination node. This idea is based on the hub network dependence on service demand forecasting, which is modeled by random values from random distribution with parameters reflecting the demand changes. The algorithm includes the mixed integer programming model which describes the hub location-allocation problem with single allocation (each node is connected exactly to one hub). The model chooses the optimal locations for the fixed number of hubs $p$ from the fixed possible location set in the problem. The perturbed data simulate the changes in the service need and present the perspectives of the network changes, and the algorithm fixes these changes. The number of changes in the network is consolidated into the variety frequencies which describe the variabilities in the set of simulations. The algorithm is implemented on Python 3.5 and model optimization is fulfilled using Gurobi Optimizer 7.0.1 software. The results in the real dataset are illustrated and discussed. Refs 18. Fig. 1. Tables 3.
Keywords: hub location-allocation, network stability, cluster number robustness, linear programming.
@article{VSPUI_2017_13_4_a5,
     author = {A. Lozkins and V. M. Bure},
     title = {Single hub location-allocation problem under robustness clustering concept},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {398--406},
     year = {2017},
     volume = {13},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a5/}
}
TY  - JOUR
AU  - A. Lozkins
AU  - V. M. Bure
TI  - Single hub location-allocation problem under robustness clustering concept
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 398
EP  - 406
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a5/
LA  - en
ID  - VSPUI_2017_13_4_a5
ER  - 
%0 Journal Article
%A A. Lozkins
%A V. M. Bure
%T Single hub location-allocation problem under robustness clustering concept
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 398-406
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a5/
%G en
%F VSPUI_2017_13_4_a5
A. Lozkins; V. M. Bure. Single hub location-allocation problem under robustness clustering concept. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 398-406. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a5/

[1] O'Kelly M. E., “Activity levels at hub facilities in interacting networks”, Geogr. Anal., 18:4 (1986), 343–356 | DOI

[2] O'Kelly M. E., “The location of interacting hub facilities”, Transp. Sci., 20 (1986), 92–105 | DOI

[3] Alumur S., Kara B. Y., “Network hub location problems: the state of the art”, European Journal of Oper. Research, 190 (2008), 1–21 | DOI | MR | Zbl

[4] Campbell J. F., O'Kelly M. E., “Twenty-five years of hub location research”, Transp. Sci., 46:2 (2012), 153–169 | DOI

[5] O'Kelly M. E., Miller H. J., “Solution strategies for the single facility minimax hub location problem”, Papers in Regional Science, 70:4 (1991), 367–380 | DOI

[6] Klincewicz J. G., “Heuristics for the $p$-hub location problem”, European Journal of Oper. Research, 53 (1991), 25–37 | DOI | Zbl

[7] Skorin-Kapov D., Skorin-Kapov J., O'Kelly M. E., “Tight linear programming relaxations of uncapacitated $p$-hub median problems”, European Journal of Oper. Research, 94 (1996), 582–593 | DOI | Zbl

[8] Kim H., O'Kelly M. E., “Reliable $p$-hub location problems in telecommunication networks”, Geogr. Anal., 41:3 (2009), 283–306 | DOI

[9] O'Kelly M. E., “Network hub structure and resilience”, Netw. Spat. Econ., 15:2 (2015), 235–251 | DOI

[10] Ebery J., Krishnamoorthy M., Ernst A. T., Boland N., “The capacitated multiple allocation hub location problems: formulations and algorithms”, European Journal of Oper. Research, 120 (2000), 614–631 | DOI | MR | Zbl

[11] Lee H., Shi Y., Nazem S. M., Kang S. Y., Park T. H., Sohn M. H., “Multicriteria hub decision making for rural area telecommunication networks”, European Journal of Oper. Research, 133 (2001), 483–495 | DOI | Zbl

[12] Campbell J. F., “Integer programming formulations of discrete hub location problems”, European Journal of Oper. Research, 72 (1994), 387–405 | DOI | Zbl

[13] Campbell J. F., Ernst A. T., Krishnamoorthy M., “Hub location problems”, Facility location: applications and theory, eds. Z. Drezner, H. Hamacher, Springer Press, Berlin, 2002, 373–406 | DOI | MR

[14] Campbell J. F., “Location and allocation for distribution systems with transshipments and transportation economies of scale”, Annals of Oper. Research, 40 (1992), 77–99 | DOI | MR | Zbl

[15] Fazlollahtabar H., “Capacitated location-allocation hub covering problem in manufacturing-customer interaction”, Journal of Appl. Comput. Math., 4 (2015), 243–245 | DOI

[16] Lordan O., Sallan J. M., Simo P., Gonzalez-Prieto D., “Robustness of airline alliance route networks”, Communications in Nonlinear Science and Numerical Simulation, 22:1 (2015), 587–595 | DOI

[17] Lozkins A., Bure V. M., “The probabilistic method of finding the local-optimum of clustering”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, no. 1, 28–37

[18] Lozkins A., Bure V. M., “The method of clusters stability assessing”, Stability and Control Processes in memory of V. I. Zubov (SCP), 2015 Intern. Conference, IEEE, 2015, 479–482 | DOI | MR