Mathematical modeling of the deformation of composite plane with interface crack for John’s harmonic material
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 372-383
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The exact analytical solution of a nonlinear plane-strain problem for a bimaterial plane with an interface crack (cut) has been obtained. The plane is formed by joining of two half-planes made from different materials. Mechanical properties of half-planes are described with the model of a John's harmonic material. The application of this model has permitted using the methods of the complex functions in the nonlinear boundary value problems. As particular case, the problem is solved for the plane with a free interface crack at given constant nominal stresses at infinity. The expressions are obtained for nominal (Piola) stresses, Cauchy stresses and displacements. From the general solutions the asymptotic expansions of these functions have been constructed in vicinities of crack tips. In nonlinear problems of uniaxial extension of a plane with a free crack it is established that the formulas which give the crack disclosing and the stress intensity factors near the crack tips coincide completely with similar formulas derived from the equations of linear elasticity. The nominal stresses have root singularity at the tips of a crack; the Cauchy stresses have no singularity. Refs 16. Figs 3. Table 1.
Keywords: bimaterial plane, plane-strain problem, method of complex functions, interface crack, John's harmonic material.
@article{VSPUI_2017_13_4_a3,
     author = {T. O. Domanskaya and V. M. Malkov and Yu. V. Malkova},
     title = {Mathematical modeling of the deformation of composite plane with interface crack for {John{\textquoteright}s} harmonic material},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {372--383},
     year = {2017},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a3/}
}
TY  - JOUR
AU  - T. O. Domanskaya
AU  - V. M. Malkov
AU  - Yu. V. Malkova
TI  - Mathematical modeling of the deformation of composite plane with interface crack for John’s harmonic material
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 372
EP  - 383
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a3/
LA  - ru
ID  - VSPUI_2017_13_4_a3
ER  - 
%0 Journal Article
%A T. O. Domanskaya
%A V. M. Malkov
%A Yu. V. Malkova
%T Mathematical modeling of the deformation of composite plane with interface crack for John’s harmonic material
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 372-383
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a3/
%G ru
%F VSPUI_2017_13_4_a3
T. O. Domanskaya; V. M. Malkov; Yu. V. Malkova. Mathematical modeling of the deformation of composite plane with interface crack for John’s harmonic material. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 372-383. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a3/

[1] John F., “Plane strain problems for a perfectly elastic material of harmonic type”, Commun. Pure and Appl. Math., 13:2 (1960), 239–296 | DOI | MR | Zbl

[2] Varley E., Cumberbatch E., “Finite deformation of elastic materials surrounding cylindrical holes”, Journal of Elasticity, 10:4 (1980), 341–405 | DOI | Zbl

[3] Ru C. Q., “On complex-variable formulation for finite plane elastostatics of harmonic materials”, Acta Mechanica, 156:3–4 (2002), 219–234 | Zbl

[4] Malkov V. M., Malkova Yu. V., “Plane problem of non-linear elasticity for harmonic material”, Vestnik of Saint Petersburg State University. Series 1. Mathematics. Mechanics. Astronomy, 2008, no. 3, 114–126 (In Russian)

[5] Ru C. Q., Schiavone P., Sudak L. J., Mioduchowski A., “Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics”, Intern. Journal of Non-linear mechanics, 38 (2005), 2–3281–287 | MR

[6] Malkov V. M., Malkova Yu. V., “Modeling nonlinear deformation of a plane with an elliptic inclusion by John's harmonic material”, Vestnik of Saint Petersburg State University. Mathematics. Mechanics. Astronomy, 4(62):1 (2017), 121–130 (In Russian) | DOI

[7] Mal'kov V. M., Mal'kova Yu. V., “Modeling Nonlinear Deformation of a Plate with an Elliptic Inclusion by John's Harmonic Material”, Vestnik of Saint Petersburg University. Mathematics, 50:1 (2017), 74–81 | DOI

[8] Malkov V. M., Malkova Yu. V., Stepanova V. A., “Bi-material plane of John's material with interface crack loaded by pressure”, Vestnik of Saint Petersburg State University. Series 1. Mathematics. Mechanics. Astronomy, 2013, no. 3, 113–125 (In Russian)

[9] Malkov V. M., Malkova Yu. V., Domanskaya T. O., “Analysis of stresses of bi-material plane and half-plane at action of a point force for two models of harmonic materials”, Vestnik of Saint Petersburg State University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, no. 1, 38–52 (In Russian)

[10] Domanskaia T., Malkov V., Malkova Yu., “Bi-material plane of John's harmonic material with a point force at interface”, XXIV Intern. Congress of Theor. and Appl. Mech. (ICTAM) (21–26 August 2016, Montreal, Canada), 2016, 1958–1959

[11] Domanskaya T. O., Malkov V. M., Malkova Yu. V., “Nonlinear problem for bi-material plate with interface crack for harmonic John's material”, 2nd Intern. Conference “Deformation and Failure of Composite Materials and Structures”, DFCMS-2016 (October 2016), Institute of Engineering RAS Publ., M., 2016, 33–35 (In Russian)

[12] Malkov V. M., Malkova Yu. V., “Investigation of non-linear Flamant's problem”, Izv. RAS. Mechanics of solids, 2006, no. 5, 68–78 (In Russian)

[13] Malkov V. M., Malkova Yu. V., “Analysis of singularity of stresses in non-linear Flamant's problem for some material models”, Applied Mathematics and Mechanics, 72:3 (2008), 453–462 (In Russian)

[14] Malkov V. M., Introduction to non-linear elasticity, Saint Petersburg State University Publ., Saint Petersburg, 2010, 276 pp. (In Russian)

[15] Muskhelishvili N. I., Some basic problems of mathematical theory of elasticity, Nauka Publ., M., 1966, 708 pp. (In Russian)

[16] Malkova Yu. V., Some problems for bi-material plane with curvilinear cracks, Saint Petersburg State University Publ., Saint Petersburg, 2008, 160 pp. (In Russian)