@article{VSPUI_2017_13_4_a3,
author = {T. O. Domanskaya and V. M. Malkov and Yu. V. Malkova},
title = {Mathematical modeling of the deformation of composite plane with interface crack for {John{\textquoteright}s} harmonic material},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {372--383},
year = {2017},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a3/}
}
TY - JOUR AU - T. O. Domanskaya AU - V. M. Malkov AU - Yu. V. Malkova TI - Mathematical modeling of the deformation of composite plane with interface crack for John’s harmonic material JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2017 SP - 372 EP - 383 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a3/ LA - ru ID - VSPUI_2017_13_4_a3 ER -
%0 Journal Article %A T. O. Domanskaya %A V. M. Malkov %A Yu. V. Malkova %T Mathematical modeling of the deformation of composite plane with interface crack for John’s harmonic material %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2017 %P 372-383 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a3/ %G ru %F VSPUI_2017_13_4_a3
T. O. Domanskaya; V. M. Malkov; Yu. V. Malkova. Mathematical modeling of the deformation of composite plane with interface crack for John’s harmonic material. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 372-383. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a3/
[1] John F., “Plane strain problems for a perfectly elastic material of harmonic type”, Commun. Pure and Appl. Math., 13:2 (1960), 239–296 | DOI | MR | Zbl
[2] Varley E., Cumberbatch E., “Finite deformation of elastic materials surrounding cylindrical holes”, Journal of Elasticity, 10:4 (1980), 341–405 | DOI | Zbl
[3] Ru C. Q., “On complex-variable formulation for finite plane elastostatics of harmonic materials”, Acta Mechanica, 156:3–4 (2002), 219–234 | Zbl
[4] Malkov V. M., Malkova Yu. V., “Plane problem of non-linear elasticity for harmonic material”, Vestnik of Saint Petersburg State University. Series 1. Mathematics. Mechanics. Astronomy, 2008, no. 3, 114–126 (In Russian)
[5] Ru C. Q., Schiavone P., Sudak L. J., Mioduchowski A., “Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics”, Intern. Journal of Non-linear mechanics, 38 (2005), 2–3281–287 | MR
[6] Malkov V. M., Malkova Yu. V., “Modeling nonlinear deformation of a plane with an elliptic inclusion by John's harmonic material”, Vestnik of Saint Petersburg State University. Mathematics. Mechanics. Astronomy, 4(62):1 (2017), 121–130 (In Russian) | DOI
[7] Mal'kov V. M., Mal'kova Yu. V., “Modeling Nonlinear Deformation of a Plate with an Elliptic Inclusion by John's Harmonic Material”, Vestnik of Saint Petersburg University. Mathematics, 50:1 (2017), 74–81 | DOI
[8] Malkov V. M., Malkova Yu. V., Stepanova V. A., “Bi-material plane of John's material with interface crack loaded by pressure”, Vestnik of Saint Petersburg State University. Series 1. Mathematics. Mechanics. Astronomy, 2013, no. 3, 113–125 (In Russian)
[9] Malkov V. M., Malkova Yu. V., Domanskaya T. O., “Analysis of stresses of bi-material plane and half-plane at action of a point force for two models of harmonic materials”, Vestnik of Saint Petersburg State University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, no. 1, 38–52 (In Russian)
[10] Domanskaia T., Malkov V., Malkova Yu., “Bi-material plane of John's harmonic material with a point force at interface”, XXIV Intern. Congress of Theor. and Appl. Mech. (ICTAM) (21–26 August 2016, Montreal, Canada), 2016, 1958–1959
[11] Domanskaya T. O., Malkov V. M., Malkova Yu. V., “Nonlinear problem for bi-material plate with interface crack for harmonic John's material”, 2nd Intern. Conference “Deformation and Failure of Composite Materials and Structures”, DFCMS-2016 (October 2016), Institute of Engineering RAS Publ., M., 2016, 33–35 (In Russian)
[12] Malkov V. M., Malkova Yu. V., “Investigation of non-linear Flamant's problem”, Izv. RAS. Mechanics of solids, 2006, no. 5, 68–78 (In Russian)
[13] Malkov V. M., Malkova Yu. V., “Analysis of singularity of stresses in non-linear Flamant's problem for some material models”, Applied Mathematics and Mechanics, 72:3 (2008), 453–462 (In Russian)
[14] Malkov V. M., Introduction to non-linear elasticity, Saint Petersburg State University Publ., Saint Petersburg, 2010, 276 pp. (In Russian)
[15] Muskhelishvili N. I., Some basic problems of mathematical theory of elasticity, Nauka Publ., M., 1966, 708 pp. (In Russian)
[16] Malkova Yu. V., Some problems for bi-material plane with curvilinear cracks, Saint Petersburg State University Publ., Saint Petersburg, 2008, 160 pp. (In Russian)