Multipole electrostatic system mathematical modeling
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 365-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents an electrostatic multipole system's mathematical modeling. The multipole system consists of an even number of equiform electrodes of an infinite length. The shape of each electrode can be arbitrary. The constant potential is equal in absolute value and sign-changing at neighboring electrodes. To calculate the potential distribution, each real electrode is changed by a virtual electrode whose surface coincides with an equipotential surface. The variable separation method is used to solve the boundary-value problem in plane polar coordinates. The electrostatic potential distribution is calculated in an analytic form over the entire region of the system. Refs 11. Figs 5.
Keywords: electron-optical system, potential distribution, electrostatic potential
Mots-clés : multipole system, Laplace equation, Poisson equation.
@article{VSPUI_2017_13_4_a2,
     author = {E. M. Vinogradova and A. V. Starikova and M. I. Varayun'},
     title = {Multipole electrostatic system mathematical modeling},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {365--371},
     year = {2017},
     volume = {13},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a2/}
}
TY  - JOUR
AU  - E. M. Vinogradova
AU  - A. V. Starikova
AU  - M. I. Varayun'
TI  - Multipole electrostatic system mathematical modeling
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 365
EP  - 371
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a2/
LA  - en
ID  - VSPUI_2017_13_4_a2
ER  - 
%0 Journal Article
%A E. M. Vinogradova
%A A. V. Starikova
%A M. I. Varayun'
%T Multipole electrostatic system mathematical modeling
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 365-371
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a2/
%G en
%F VSPUI_2017_13_4_a2
E. M. Vinogradova; A. V. Starikova; M. I. Varayun'. Multipole electrostatic system mathematical modeling. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 365-371. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a2/

[1] Hawkes P. W., “The correction of electron len saberrations”, Ultramicroscopy, 156 (2015), A1–A64 | DOI

[2] Baranova L. A., Read F. H., Cubric D., “Computational simulation of an electrostatic aberration corrector for a low-voltage scanning electron microscope”, Nuclear Instruments and Methods in Physics Research A, 519 (2004), 42–48 | DOI

[3] Baranova L. A., Read F. H., “Minimisation of the aberrations of electrostatic lens systems composed of quadrupole and octupole lenses”, International Journal of Mass Spectrometry, 189 (1999), 19–26 | DOI

[4] Munro E., Rouse J., Liu H., Wang L., “Aberration correction for electron beam inspection, metrology and lithography”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 26:6 (2008), 2331–2336

[5] Zach J., Haider M., “Aberration correction in a low voltage SEM by a multipole corrector”, Nuclear Instruments and Methods in Physics Research A, 363 (1995), 316–325 | DOI

[6] Vinogradova E. M., Egorov E. N., Televnyy D. S., “Mathematical modeling of field emitter array”, Vacuum, 127 (2016), 45–50 | DOI

[7] Vinogradova E. M., Egorov E. N., Klimakov A. A., “Mathematical simulation of a diode system with a cylindrical field-emission tip”, Technical Physics, 60:2 (2015), 176–179 | DOI

[8] Starikova A. V., Vinogradova E. M., “The electrostatic octupole lens mathematical modeling”, 2016 Young Researchers in Vacuum Micro/Nano Electronics, VMNE-YR 2016 — Proceedings (16 March, 2017), 7880416

[9] Vinogradova E. M., Lisrtukova A. V., “The electrostatic quadrupole lens mathematical modeling”, Vestnik of Saint Petersburg State University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, no. 1, 19–27 (In Russian) | MR

[10] Vinogradova E. M., Egorov N. V., Starikova A. V., Varayun M. I., “Calculating a Multipole Cylindrical Electrostatic System”, Technical Physics, 62:5 (2017), 791–794 | DOI

[11] Vinogradova E. M., Starikova A. B., “The multipole lens mathematical modeling”, Proceedings of RuPAC 2016 (Saint Petersburg, Russia), Saint Petersburg State University Publ., 2016, 535–537