Steady flows of second-grade fluids in a channel
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 342-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study mathematical models describing steady flows of second-grade fluids in a plane channel. The flows are driven by constant pressure gradient. We consider various boundary conditions on the channel walls, namely, the no-slip condition, the free-slip condition, threshold slip conditions, and mixed boundary conditions. For each of the boundary value problems, we construct exact solutions, which characterize the velocity and pressure fields in the channel. Using these solutions, we show that the pressure significantly depends on the normal stress coefficient $\alpha$, especially in those subdomains, where the change of flow velocity is large (in the transverse direction of the channel). At the same time, the velocity field is independent of $\alpha$, and therefore coincides with the velocity field that occurs in the case of a Newtonian fluid (when $\alpha= 0$). Moreover, we establish that the key point in a description of stick-slip flows is value of $\xi h$, where $\xi$ is module of the gradient pressure, $h$ is the half-channel height. If $\xi h$ exceeds some threshold value, then the slip regime holds at solid surfaces, otherwise the fluid adheres to the channel walls. If it is assumed that the free-slip condition (Navier's condition) is provided on one part of the boundary, while on the other one a stick-slip condition holds, then for the slip regime the corresponding threshold value is reduced to a certain extent, but not by more than half. Refs 15.
Keywords: non-Newtonian fluids, second-grade fluids, slip boundary conditions, boundary value problems
Mots-clés : the Poiseuille flow, exact solutions.
@article{VSPUI_2017_13_4_a0,
     author = {E. S. Baranovskii and M. A. Artemov},
     title = {Steady flows of second-grade fluids in a channel},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {342--353},
     year = {2017},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a0/}
}
TY  - JOUR
AU  - E. S. Baranovskii
AU  - M. A. Artemov
TI  - Steady flows of second-grade fluids in a channel
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 342
EP  - 353
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a0/
LA  - ru
ID  - VSPUI_2017_13_4_a0
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%A M. A. Artemov
%T Steady flows of second-grade fluids in a channel
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 342-353
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a0/
%G ru
%F VSPUI_2017_13_4_a0
E. S. Baranovskii; M. A. Artemov. Steady flows of second-grade fluids in a channel. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 342-353. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a0/

[1] Rivlin R. S., Ericksen J. L., “Stress-deformation relations for isotropic materials”, Journal of Rational Mechanics and Analysis, 4:2 (1955), 323–425 | MR | Zbl

[2] Dunn J. E., Rajagopal K. R., “Fluids of differential type: Critical review and thermodynamic analysis”, Intern. Journal of Engineering Science, 33:5 (1995), 689–729 | DOI | MR | Zbl

[3] Dunn J. E., Fosdick R. L., “Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade”, Archive for Rational Mechanics and Analysis, 56 (1974), 191–252 | DOI | MR | Zbl

[4] Rajagopal K. R., “On some unresolved issues in non-linear fluid dynamics”, Russian Mathematical Surveys, 58:2 (2003), 319–300 | DOI | MR

[5] Aref'ev N. N., Shtin S. M., “Method for determination of rheological properties of sapropel”, Mining Informational and Analytical Bulletin. Scientific and Technical Journal, 2007, no. 1, 41–47 (In Russian)

[6] Kazatchkov I. B., Hatzikiriakos S. G., “Relaxation effects of slip in shear flow of linear molten polymers”, Rheologica Acta, 49:3 (2010), 267–274 | DOI

[7] Hatzikiriakos S. G., “Wall slip of molten polymers”, Progress in Polymer Science, 37:4 (2012), 624–643 | DOI

[8] Makarova M. A., Pyshnograj I. G., Pyshnograj G. V., Altuhov Ju. A., Golovicheva I. Je., Tregubova Ju. B., Tret'jakov I. V., Afonin G. L., Al' Dzhoda H. N. A., “Formulation of mesoscopic boundary conditions for the slip velocity on the boundary”, Polzunovsky Journal, 2012, no. 3-1, 61–74 (In Russian)

[9] Ivickij I. I., “Modeling of wall slip of polymers”, Technology Audit and Production Reserves, 5:3(19) (2014), 8–11 (In Russian)

[10] Tolstoy D. M., Slipping liquids and disperse systems on solid surfaces, Doct. dis., Moscow Machine-Instrument Institute, M., 1953, 349 pp. (In Russian)

[11] Hron J., Le Roux C., Malek J., Rajagopal K. R., “Flows of incompressible fluids subject to Navier's slip on the boundary”, Computers and Mathematics with Applications, 56 (2008), 2128–2143 | DOI | MR | Zbl

[12] Le Roux C., “Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions”, Archive for Rational Mechanics and Analysis, 148 (1999), 309–356 | DOI | MR | Zbl

[13] Busuioc A. V., Ratiu T. S., “The second grade fluid and averaged Euler equations with Navier-slip boundary conditions”, Nonlinearity, 16 (2003), 1119–1149 | DOI | MR | Zbl

[14] Baranovskii E. S., “Existence results for regularized equations of second-grade fluids with wall slip”, Electronic Journal of Qualitative Theory of Differential Equations, 91 (2015), 1–12 | DOI | MR

[15] Schlichting H., Grenzschicht-Theorie, Verlag, Karlsruhe, 1951, 483 pp. | MR