Mots-clés : the Poiseuille flow, exact solutions.
@article{VSPUI_2017_13_4_a0,
author = {E. S. Baranovskii and M. A. Artemov},
title = {Steady flows of second-grade fluids in a channel},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {342--353},
year = {2017},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a0/}
}
TY - JOUR AU - E. S. Baranovskii AU - M. A. Artemov TI - Steady flows of second-grade fluids in a channel JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2017 SP - 342 EP - 353 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a0/ LA - ru ID - VSPUI_2017_13_4_a0 ER -
%0 Journal Article %A E. S. Baranovskii %A M. A. Artemov %T Steady flows of second-grade fluids in a channel %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2017 %P 342-353 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a0/ %G ru %F VSPUI_2017_13_4_a0
E. S. Baranovskii; M. A. Artemov. Steady flows of second-grade fluids in a channel. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 4, pp. 342-353. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_4_a0/
[1] Rivlin R. S., Ericksen J. L., “Stress-deformation relations for isotropic materials”, Journal of Rational Mechanics and Analysis, 4:2 (1955), 323–425 | MR | Zbl
[2] Dunn J. E., Rajagopal K. R., “Fluids of differential type: Critical review and thermodynamic analysis”, Intern. Journal of Engineering Science, 33:5 (1995), 689–729 | DOI | MR | Zbl
[3] Dunn J. E., Fosdick R. L., “Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade”, Archive for Rational Mechanics and Analysis, 56 (1974), 191–252 | DOI | MR | Zbl
[4] Rajagopal K. R., “On some unresolved issues in non-linear fluid dynamics”, Russian Mathematical Surveys, 58:2 (2003), 319–300 | DOI | MR
[5] Aref'ev N. N., Shtin S. M., “Method for determination of rheological properties of sapropel”, Mining Informational and Analytical Bulletin. Scientific and Technical Journal, 2007, no. 1, 41–47 (In Russian)
[6] Kazatchkov I. B., Hatzikiriakos S. G., “Relaxation effects of slip in shear flow of linear molten polymers”, Rheologica Acta, 49:3 (2010), 267–274 | DOI
[7] Hatzikiriakos S. G., “Wall slip of molten polymers”, Progress in Polymer Science, 37:4 (2012), 624–643 | DOI
[8] Makarova M. A., Pyshnograj I. G., Pyshnograj G. V., Altuhov Ju. A., Golovicheva I. Je., Tregubova Ju. B., Tret'jakov I. V., Afonin G. L., Al' Dzhoda H. N. A., “Formulation of mesoscopic boundary conditions for the slip velocity on the boundary”, Polzunovsky Journal, 2012, no. 3-1, 61–74 (In Russian)
[9] Ivickij I. I., “Modeling of wall slip of polymers”, Technology Audit and Production Reserves, 5:3(19) (2014), 8–11 (In Russian)
[10] Tolstoy D. M., Slipping liquids and disperse systems on solid surfaces, Doct. dis., Moscow Machine-Instrument Institute, M., 1953, 349 pp. (In Russian)
[11] Hron J., Le Roux C., Malek J., Rajagopal K. R., “Flows of incompressible fluids subject to Navier's slip on the boundary”, Computers and Mathematics with Applications, 56 (2008), 2128–2143 | DOI | MR | Zbl
[12] Le Roux C., “Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions”, Archive for Rational Mechanics and Analysis, 148 (1999), 309–356 | DOI | MR | Zbl
[13] Busuioc A. V., Ratiu T. S., “The second grade fluid and averaged Euler equations with Navier-slip boundary conditions”, Nonlinearity, 16 (2003), 1119–1149 | DOI | MR | Zbl
[14] Baranovskii E. S., “Existence results for regularized equations of second-grade fluids with wall slip”, Electronic Journal of Qualitative Theory of Differential Equations, 91 (2015), 1–12 | DOI | MR
[15] Schlichting H., Grenzschicht-Theorie, Verlag, Karlsruhe, 1951, 483 pp. | MR