@article{VSPUI_2017_13_3_a3,
author = {V. V. Provotorov and V. I. Ryazhskikh and Yu. A. Gnilitskaya},
title = {Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {264--277},
year = {2017},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_3_a3/}
}
TY - JOUR AU - V. V. Provotorov AU - V. I. Ryazhskikh AU - Yu. A. Gnilitskaya TI - Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2017 SP - 264 EP - 277 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_3_a3/ LA - en ID - VSPUI_2017_13_3_a3 ER -
%0 Journal Article %A V. V. Provotorov %A V. I. Ryazhskikh %A Yu. A. Gnilitskaya %T Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2017 %P 264-277 %V 13 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_3_a3/ %G en %F VSPUI_2017_13_3_a3
V. V. Provotorov; V. I. Ryazhskikh; Yu. A. Gnilitskaya. Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 3, pp. 264-277. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_3_a3/
[1] Gnilitskaya Yu. A., Mathematical modeling and numerical study of processes in netlike objects described by evolutionary equations, Cand. Diss. of physical and mathematical sciences, Voronezh State Technical University, Voronezh, 2015, 224 pp. (in Russian)
[2] Volkova A. S., Provotorov V. V., “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Russian Mathematics. Proceeding of Higher Educatianal institutions, 58:3 (2014), 1–13 (in Russian) | MR | Zbl
[3] Volkova A. S., Gnilitskaya Yu. A., Provotorov V. V., “On the solvability of boundary-value problems for parabolic and hyperbolic equations on geometrical graphs”, Automation and Remote Control, 75:2 (2014), 405–412 | DOI | MR | Zbl
[4] Provotorov V. V., Gnilitskaya Yu. A., “Boundary control of a wave system in the space of generalized solutions on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2013, no. 3, 112–120 (in Russian)
[5] Mir Publ., M., 1972, 587 pp. | MR
[6] Mir Publ., M., 1971, 371 pp. | MR | Zbl
[7] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka Publ., M., 1973, 407 pp. (in Russian) | MR
[8] Podvalny S. L., Provotorov V. V., “Starting control of a parabolic system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 3, 126–142 (in Russian) | MR
[9] Kutateladze S. S., Styrikovich M. A., Hydrodynamics of gas-liquid systems, Energiya Publ., M., 1976, 296 pp. (in Russian) | MR
[10] Provotorov V. V., “Boundary control of a parabolic system with distributed parameters on a graph in the class of summable functions”, Automation and Remote Control, 76:2 (2015), 318–322 | DOI | MR | Zbl
[11] Podvalny S. L., Provotorov V. V., “The questions of controllability of a parabolic systems with distributed parameters on the graph”, Intern. Conference “Stability and Control Processes” in memory of V. I. Zubov (SCP) (2015), 117–119
[12] Provotorov V. V., “Optimal control of a parabolic system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 3, 154–163 (in Russian) | MR
[13] Potapov D. K., “Optimal control of higher order elliptic distributed systems with a spectral parameter and discontinuous nonlinearity”, Journal of Computer and System Sciences International, 52:2 (2009), 180–185 (in Russian) | DOI | MR
[14] Aleksandrov A. Yu., Zhabko A. P., “On stability of solutions to one class of nonlinear difference systems”, Siberian Mathematical Journal, 44:6 (2003), 951–958 (in Russian) | DOI | MR | Zbl
[15] Aleksandrov A., Aleksandrova E., Zhabko A., “Asymptotic stability conditions for certain classes of mechanical systems with time delay”, WSEAS Transactions on Systems and Control, 9 (2014), 388–397 | MR
[16] Aleksandrov A. Yu., Platonov A. V., “On stability and dissipativity of some classes of complex systems”, Automation and Remote Control, 70:8 (2009), 1265–1280 (in Russian) | DOI | MR | Zbl
[17] Veremey E. I., Korchanov V. M., “Multiobjective stabilization of the dynamic systems from a certain class”, Automation and Remote Control, 1988, no. 9, 126–137 (in Russian) | MR
[18] Veremey E. I., Sotnikova M. V., “Plasma stabilization by prediction with stable linear approximation”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 1, 116–133 (in Russian)
[19] Karelin V. V., “Penalty functions in the control problem of an observation process”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 4, 109–114 (in Russian)
[20] Kamachkin A. M., Yevstafyeva V. V., “Oscillations in a relay control system at an external disturbance”, Control Applications of Optimization 2000, Proceedings of the 11th IFAC Workshop, v. 2, 2000, 459–462