@article{VSPUI_2017_13_3_a1,
author = {R. V. Voronov},
title = {The fault-tolerant metric dimension of the king's graph},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {241--249},
year = {2017},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_3_a1/}
}
TY - JOUR AU - R. V. Voronov TI - The fault-tolerant metric dimension of the king's graph JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2017 SP - 241 EP - 249 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_3_a1/ LA - en ID - VSPUI_2017_13_3_a1 ER -
%0 Journal Article %A R. V. Voronov %T The fault-tolerant metric dimension of the king's graph %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2017 %P 241-249 %V 13 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_3_a1/ %G en %F VSPUI_2017_13_3_a1
R. V. Voronov. The fault-tolerant metric dimension of the king's graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 3, pp. 241-249. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_3_a1/
[1] Krilatov A. Yu., “Optimal strategies for traffic flow management on the transportation network of parallel links”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 2, 120–129 (In Russian)
[2] Raj F. S., George A., “On the metric dimension of few network sheets”, Robotics, Automation, Control and Embedded Systems — RACE, Intern. conference on robotics, IEEE, 2015, 1–6 | MR
[3] Melter R. A., Tomescu I., “Metric bases in digital geometry”, Computer Vision, Graphics, and Image Processing, 25:1 (1984), 113–121 | DOI | MR | Zbl
[4] Chaudhry M. A., Javaid I., Salman M., “Fault-tolerant metric and partition dimension of graphs”, Utilitas Mathematica, 83 (2010), 187–199 | MR | Zbl
[5] Barragán-Ramírez G. A., Rodríguez-Velázquez J. A., “The local metric dimension of strong product graphs”, Graphs and Combinatorics, 32:4 (2016), 1263–1278 | DOI | MR | Zbl
[6] Harary F., Melter R. A., “On the metric dimension of a graph”, Ars Combinatoria, 2 (1976), 191–195 | MR | Zbl
[7] Slater P. J., “Leaves of trees”, Proc. 6th Southeastern Conference on Combinatorics, Graph Theory and Computing, 1975, 549–559 | MR | Zbl
[8] Khuller S., Raghavachari B., Rosenfeld A., “Landmarks in graphs”, Discrete Applied Mathematics, 70:3 (1996), 217–229 | DOI | MR | Zbl
[9] Chartrand G., Eroh L., Johnson M. A., Oellermann O. R., “Resolvability in graphs and the metric dimension of a graph”, Discrete Applied Mathematics, 105 (2000), 99–113 | DOI | MR | Zbl
[10] Sebö A., Tannier E., “On metric generators of graphs”, Mathematics of Operations Research, 29:2 (2004), 383–393 | DOI | MR | Zbl
[11] Fehr M., Gosselin S., Oellermann O., “The metric dimension of Cayley digraphs”, Discrete Mathematics, 306 (2006), 31–41 | DOI | MR | Zbl
[12] Hernando C., Mora M., Slater P. J., Wood D. R., “Fault-tolerant metric dimension of graphs”, Proc. Intern. conference Convexity in Discrete Structures, Ramanujan Mathematical Society Lecture Notes, 5, 2008, 81–85 | MR | Zbl
[13] Okamoto F., Phinezy B., Zhang P., “The local metric dimension of a graph”, Mathematica Bohemica, 135:3 (2010), 239–255 | MR | Zbl
[14] Bollobas B., Mitsche D., Pralat P., Metric dimension for random graphs, 2012, arXiv: (accessed: 1.12.2016) 1208.3801
[15] Epstein L., Levin A., Woeginger G. J., “The (weighted) metric dimension of graphs: hard and easy cases”, Algorithmica, 72:4 (2015), 1130–1171 | DOI | MR | Zbl
[16] Imran M., “On dimensions of some infinite regular graphs generated by infinite hexagonal grid”, Utilitas Mathematica, 92 (2013), 3–15 | MR | Zbl
[17] Klein D. J., Yi E., “A comparison on metric dimension of graphs, line graphs, and line graphs of the subdivision graphs”, European Journal of Pure and Applied Mathematics, 5:3 (2012), 302–316 | MR | Zbl
[18] Zejnilović S., Mitsche D., Gomes J., Sinopoli B., “Extending the metric dimension to graphs with missing edges”, Theoretical Computer Science, 609 (2016), 384–394 | DOI | MR | Zbl
[19] Javaid I., Salman M., Chaudhry M. A., Shokat S., “Fault-tolerance in resolvability”, Utilitas Mathematica, 80 (2009), 263–275 | MR | Zbl
[20] Rodríguez-Velázquez J. A., Kuziak D., Yero I. G., Sigarreta J. M., “The metric dimension of strong product graphs”, Carpathian Journal of Mathematics, 31:2 (2015), 261–268 | MR | Zbl