@article{VSPUI_2017_13_2_a6,
author = {V. V. Provotorov and E. N. Provotorova},
title = {Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {209--224},
year = {2017},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a6/}
}
TY - JOUR AU - V. V. Provotorov AU - E. N. Provotorova TI - Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2017 SP - 209 EP - 224 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a6/ LA - ru ID - VSPUI_2017_13_2_a6 ER -
%0 Journal Article %A V. V. Provotorov %A E. N. Provotorova %T Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2017 %P 209-224 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a6/ %G ru %F VSPUI_2017_13_2_a6
V. V. Provotorov; E. N. Provotorova. Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a6/
[1] Provotorov V. V., “Optimal control of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg State University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 3, 154–163 (In Russian)
[2] Provotorov V. V., “Start control of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg State University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 3, 126–142 (In Russian)
[3] Provotorov V. V., “Boundary control of a parabolic system with delay and distributed parameters on the graph”, Intern. conference “Stability and Control Processes” in memory of V. I. Zubov (SCP), Saint Petersburg State University, Saint Petersburg, 2015, 126–128
[4] Podvalny S. L., Provotorov V. V., “The questions of controllability of a parabolic systems with distributed parameters on the graph”, Intern. conference “Stability and Control Processes” in memory of V. I. Zubov (SCP), Saint Petersburg State University, Saint Petersburg, 2015, 117–119
[5] Provotorov V. V., Volkova A. S., Initial-boundary value problems with distributed parameters on the graph, Nauchnaya kniga Publ., Voronezh, 2014, 188 pp. (In Russian)
[6] Provotorov V. V., “Boundary control of a parabolic system with distributed parameters on a graph in the class of summable functions”, Automation and Remote Control, 76:2 (2015), 318–322 | DOI | MR | Zbl
[7] Lions J. L., Controle optimal de sistemes gouvernes par des eqations aux derivees partielles, Dunod Gauthier-Villars, Paris, 1968, 402 pp. | MR
[8] Volkova A. S., Provotorov V. V., “Generalized solutions and generalized eigenfunctions of the boundary value problems on a geometric graph”, Proceedings of Higher Educational Institutions. Mathematics, 2014, no. 3, 3–18 (In Russian)
[9] Provotorov V. V., “The expansion in eigenfunctions of the Sturm–Liouville problem on a graph bundle”, Proceedings of Higher Educational Institutions. Mathematics, 2008, no. 3, 50–62 (In Russian)
[10] Ladyzhenskaya I. A., Boundary-value problems of mathematical physics, Nauka Publ., M., 1973, 407 pp. (In Russian)
[11] Podval'ny S. L., Provotorov V. V., “Optimal problems for evolution system with distributed parameters on the graph”, Modern methods of Applied Mathematics, Control Theory and Computer Technology, PMTUKT-2014, VII Intern. scientific conference, Nauchnaia kniga Publ., Voronezh, 2015, 282–286 (In Russian) | Zbl
[12] Podval'ny S. L., Provotorov V. V., “Optimization for starting conditions of the parabolic system with distributed parameters on the graph”, Control systems and information technologies, 58:4 (2014), 70–74 (In Russian) | Zbl
[13] Volkova A. S., Gnilitskaya Yu. A., Provotorov V. V., “On the solvability of Boundary-Value problems for parabolic and hyperbolic equations on geometrical graphs”, Automation and Remote Control, 75:2 (2014), 405–412 | DOI | MR | Zbl
[14] Aleksandrov A. Yu., Zhabko A. P., “On asymptotic stability of solutions of nonlinear systems with delay”, Automation and Remote Control, 54:4 (2013), 4–7 (In Russian)
[15] Aleksandrov A. Yu., Zhabko A. P., “On the stability of solutions of a class nonlinear systems with delay”, Siberian Mathematical Journal, 44:6 (2003), 1217–1228 (In Russian)
[16] Veremey A. I., Korchanov V. I., “A multipurpose stabilization of dynamical systems of a class”, Automation and Remote Control, 1988, no. 9, 126–137 (In Russian) | Zbl
[17] Veremey A. I., Sotnikova I. V., “Plasma stabilization on the basis of the forecast with steady linear approach”, Vestnik of Saint Petersburg State University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 1, 116–133 (In Russian)
[18] Karelin V. V., “Penal functions in a problem of management of supervision process”, Vestnik of Saint Petersburg State University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 4, 109–114 (In Russian)
[19] Potapov D. E., “Optimal control of distributed high order systems of elliptic type with a spectral parameter and a discontinuous nonlinearity”, Proceedings of Russian Academy of Sciences. Series TeSU, 2013, no. 2, 19–24 (In Russian)
[20] Kamachkin A. M., Yevstafyeva V. V., “Oscillations in a relay control system at an external disturbance”, Control Applications of Optimization–2000, Proceedings of the 11th IFAC Workshop, v. 2, 2000, 459–462