Suboptimal control construction for the model predictive controller
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 2, pp. 193-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Model predictive control (MPC) is a well-known and widely used control algorithm. The problem of real-time MPC implementation for complex systems is of particular practical interest due to the complexity of the associated optimization problem which is generally intractable in real time. The paper presented deals with this issue making use of the famous dynamical programming idea and reducing the dimensionality of the original optimization problem. The outline of the paper is as follows. The MPC problem is considered for a nonlinear discrete-time system with state and control constraint sets and a quadratic cost functional. The assumptions worth noting are, firstly, the Lipschitz continuity of the right hand side of the system and, secondly, continuity in some sense of the admissible control set with respect to the current state of the system. Employing these properties we are able to prove the Lipschitz continuity of the optimal cost value as a function of the initial state of the system. This result provides us with the opportunity to approximate the minimal value of the last several summands of the cost functional as a function of the intermediate system state by means of precalculating it for a set of state values before the controller is launched. The summands mentioned may be then excluded from the optimization reducing the dimensionality of the problem. The results are followed by a discussion of their limitations and an example of application. It is shown that the simpler the resulting problem, the less smooth it becomes, thus making it necessary to use more data points for the approximation. Another observation is that the smoothness of the problem decreasing far from the set point. The theorems proven in the paper give the reasoning behind these facts but the means of dealing with them are due to further research. Refs 18. Figs 2.
Keywords: optimal control, suboptimal control, optimal cost value continuity, numerical optimization, approximate optimization, real-time control, model predictive control, MPC.
@article{VSPUI_2017_13_2_a5,
     author = {A. A. Ponomarev},
     title = {Suboptimal control construction for the model predictive controller},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {193--208},
     year = {2017},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a5/}
}
TY  - JOUR
AU  - A. A. Ponomarev
TI  - Suboptimal control construction for the model predictive controller
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 193
EP  - 208
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a5/
LA  - ru
ID  - VSPUI_2017_13_2_a5
ER  - 
%0 Journal Article
%A A. A. Ponomarev
%T Suboptimal control construction for the model predictive controller
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 193-208
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a5/
%G ru
%F VSPUI_2017_13_2_a5
A. A. Ponomarev. Suboptimal control construction for the model predictive controller. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 2, pp. 193-208. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a5/

[1] Camacho E. F., Bordons C., Model predictive control, Springer-Verlag, London, 2007, 405 pp. | MR | Zbl

[2] Maciejowski J. M., Predictive control with constraints, Prentice Hall, London, 2002, 331 pp.

[3] Qin S. J., Badgwell T. A., “A survey of industrial model predictive control technology”, Control Engineering Practice, 11:7 (2003), 733–764 | DOI

[4] Richalet J., Rault A., Testud J. L., Papon J., “Model predictive heuristic control: applications to industrial processes”, Automatica, 14:5 (1978), 413–428 | DOI

[5] Veremey E. I., Sotnikova M. V., “Plasma stabilization on the base of model predictive control with the linear closed-loop system stability”, Vestnik of Saint Petersburg State University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2011, no. 1, 116–133 (In Russian)

[6] Sotnikova M., “Ship dynamics control using predictive models”, Proceedings of the 9th IFAC conference on Manoeuvring and Control of Marine Craft, MCMC 2012 (Arenzano, Italy, September 19–21, 2012), 250–255

[7] Sotnikova M. V., “The problem of stability in model predictive control”, Vestnik of Voronezh State Technical University, 8:1 (2012), 72–79 (In Russian)

[8] Chen W.-H., Ballance D. J., O'Reilly J., “Model predictive control of nonlinear systems: Computational burden and stability”, IEE Proc.-Control Theory Appl., 147:4 (2000), 387–394 | DOI

[9] Baranov O. V., Popkov A. S., Smirnov N. V., “Real-time quadrocopter optimal stabilization”, Intern. conference “Stability and Control Processes” in memory of V. I. Zubov ($SCP$), Izdat. House of G. V. Fedorova Publ., Saint Petersburg, 2015, 123–125 (In Russian)

[10] Wang Y., Boyd S., “Fast model predictive control using online optimization”, IEEE Trans. Control Sys. Tech., 18:2 (2010), 267–278 | DOI

[11] Scokaert P. O. M., Mayne D. Q., Rawlings J. B., “Suboptimal model predictive control (feasibility implies stability)”, IEEE Trans. Autom. Control., 44:3 (1999), 648–654 | DOI | MR | Zbl

[12] Bemporad A., Oliveri A., Poggi T., Storace M., “Ultra-fast stabilizing model predictive control via canonical piecewise affine approximations”, IEEE Trans. Autom. Control., 56:12 (2011), 2883–2897 | DOI | MR

[13] Johansen T. A., Grancharova A., “Approximate explicit constrained linear model predictive control via orthogonal search tree”, IEEE Trans. Autom. Control., 48:5 (2003), 810–815 | DOI | MR | Zbl

[14] Johansen T. A., “Approximate explicit receding horizon control of constrained nonlinear systems”, Automatica, 40:2 (2004), 293–300 | DOI | MR | Zbl

[15] Ponomarev A. A., “Feedback approximation in model predictive control”, Intern. conference “Stability and Control Processes” in memory of V. I. Zubov ($SCP$), Izdat. House of G. V. Fedorova Publ., Saint Petersburg, 2015, 342–344 (In Russian)

[16] Ponomarev A. A., “Suboptimal control construction for the model predictive controller”, Vestnik of Saint Petersburg State University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2014, no. 3, 141–153 (In Russian)

[17] Bellman R., “The theory of dynamic programming”, Bulletin of the American Mathematical Society, 60:6 (1954), 503–516 | DOI | MR

[18] Cignoni P., Montani C., Scopigno R., “A comparison of mesh simplification algorithms”, Computers Graphics, 22:1 (1998), 37–54 | DOI