Optimal strategies for road network’s capacity allocation
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 2, pp. 182-192
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of allocating the capacity of a road network is considered. The network is presented by a digraph with one source–sink pair and $n$ alternative (not intersecting) routes. To arrive at the optimal strategy for a road network's capacity allocation, a bi-level optimization program is formulated. The upper level is a modeling decision made by the city administration entrusted with making constructive changes to the road network. The administration seeks to minimize the overall travel time on the network. The lower level is modeling the behavior of network's users, who react to any constructive changes. Each driver tends to minimize his/her own travel time from origin to destination. The optimal solution is obtained explicitly for the studied network. A methodological tool for decision-making support in road network sphere is then developed. Refs 8. Fig. 1.
Keywords: bi-level optimization, constrained nonlinear optimization, user equilibrium of Wardrop, network design problem, capacity allocation.
@article{VSPUI_2017_13_2_a4,
     author = {A. Yu. Krylatov},
     title = {Optimal strategies for road network{\textquoteright}s capacity allocation},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {182--192},
     year = {2017},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a4/}
}
TY  - JOUR
AU  - A. Yu. Krylatov
TI  - Optimal strategies for road network’s capacity allocation
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 182
EP  - 192
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a4/
LA  - ru
ID  - VSPUI_2017_13_2_a4
ER  - 
%0 Journal Article
%A A. Yu. Krylatov
%T Optimal strategies for road network’s capacity allocation
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 182-192
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a4/
%G ru
%F VSPUI_2017_13_2_a4
A. Yu. Krylatov. Optimal strategies for road network’s capacity allocation. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 2, pp. 182-192. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a4/

[1] Zyryanov V. V., Kocherga V. G., Pozdnyakov M. N., “Modern approaches to development of complex traffic management schemes”, Transport of Russian Federation, 2011, no. 1(32), 54–59 (In Russian)

[2] Farahani R. Z., Miandoabchi E., Szeto W. Y., Rashidi H., “A review of urban transportation network design problems”, European Journal of Operational Research, 229 (2013), 281–302 | DOI | MR | Zbl

[3] Wardrop J. G., “Some theoretical aspects of road traffic research”, Proc. Institution of Civil Engineers, 2 (1952), 325–378 | DOI

[4] Beckmann M. J., McGuire C. B., Winsten C. B., Studies in the economics of transportation, Yale University Press, New Haven, CT, 1956, 359 pp.

[5] Sheffi Y., Urban transportation networks: equilibrium analysis with mathematical programming methods, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1985, 416 pp.

[6] Yang H., Huang H.-J., “The multi-class, multi-criteria traffic network equilibrium and systems optimum problem”, Transportation Research. Pt B, 38 (2004) (1–15)

[7] V. A. Druzhinina, I. A. Volkova (eds.), Introduction to mathematical modelling of traffic flows, Moscow phys. and techn. University Publ., M., 2010, 360 pp. (In Russian)

[8] Krylatov A. Yu., “Optimal strategies for traffic flow management on the transportation network of parallel links”, Vestnik of Saint Petersburg State University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2014, no. 2, 121–130 (In Russian)