Modeling of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point $L_1$
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 2, pp. 147-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the motion of a celestial body (as a rigid body) within the restricted three-body problem of the Sun–Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point $L_1$ are investigated. The translational orbital motion of a celestial body is described using Hill's equations of a circular restricted three-body problem of the Sun–Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. As an important result, we investigate the problems of celestial body motion stability in relative equilibrium positions and stabilization of a celestial body motion with proposed control laws in collinear libration point $L_1$. To study stabilization problems, Lyapunov function is constructed in the form of the sum of the kinetic energy of a celestial body and special “kinematics” function of the Rodriguez–Hamiltonian parameters. The numerical modeling of the controlled rotational motion of a celestial body at libration point $L_1$ is carried out. The numerical characteristics of the control parameters and rotational motion of the celestial body are given. Results of numerical integration are presented graphically. Refs 14. Figs 10.
Keywords: restricted three body problem, Hill's problem, libration point, rigid body, control, stabilization.
Mots-clés : coupled attitude-orbit motion
@article{VSPUI_2017_13_2_a2,
     author = {D. V. Shymanchuk},
     title = {Modeling of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point~$L_1$},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {147--167},
     year = {2017},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a2/}
}
TY  - JOUR
AU  - D. V. Shymanchuk
TI  - Modeling of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point $L_1$
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 147
EP  - 167
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a2/
LA  - ru
ID  - VSPUI_2017_13_2_a2
ER  - 
%0 Journal Article
%A D. V. Shymanchuk
%T Modeling of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point $L_1$
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 147-167
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a2/
%G ru
%F VSPUI_2017_13_2_a2
D. V. Shymanchuk. Modeling of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point $L_1$. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 2, pp. 147-167. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_2_a2/

[1] Beletsky V. V., Motion of the satellite around its center of mass, Nauka Publ., M., 1965, 416 pp. (In Russian)

[2] Beletsky V. V., Motion of the satellite around its center of mass in a gravitational field, Moscow State University Publ., M., 1975, 308 pp. (In Russian)

[3] Markeev A. P., Libration points in celestial mechanics and cosmodynamics, Nauka Publ., M., 1978, 312 pp. (In Russian)

[4] Shmyrov V. A., “Stabilization of the orbital motion of the spacecraft in the neighborhood of the collinear libration points $L_1$”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2005, no. 2, 193–199 (In Russian)

[5] Shymanchuk D. V., “Modelling orbital controlled motion of a spacecraft in the neighborhood of the collinear libration point $L_1$”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 3, 86–92 (In Russian)

[6] Shmyrov A., Shymanchuk D., “Maneuvering in near-Earth space with the use of the collinear libration points”, Intern. conference on Mechanics – Seventh Polyakhov's Reading, 2015, 7106777, 5 pp.

[7] Shmyrov A., Shymanchuk D., Sokolov L., “The interception problem of a celestial body with the use of the collinear libration points”, Intern. conference on “Stability and Control Processes” in memory of V. I. Zubov (SCP), Proceedings, IEEE, Saint Petersburg, 2015, 7342068, 129–131

[8] Kane T. R., Marsh E. L., “Attitude stability of a symmetric satellite at the equilibrium points in the restricted three-body problem”, Celestial Mechanics, 4 (1971), 78–90 | DOI | MR | Zbl

[9] Guzzetti D., Howell K. C., “Natural periodic orbit-attitude behaviors for rigid bodies in three-body periodic orbits”, Acta Astronautica, 130 (2017), 97–113 | DOI

[10] Markeev A. P., Theoretical Mechanics, Nauka Publ., M., 1990, 416 pp. (In Russian) | MR

[11] Branets V. N., Shmyglevskiy I. P., The use of quaternions in problems of the rigid body orientation, Nauka Publ., M., 1973, 320 pp. (In Russian)

[12] Golubev Y. F., “Quaternion algebra in rigid body kinematics”, Preprints of Keldysh Institute of applied mathematics, 2013, 039, 23 pp. (accessed: 27.09.2016)

[13] Shymanchuk D. V., Shmyrov A. S., “Construction of the trajectory of the return in the neighborhood of the collinear libration point of the Sun–Earth system”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2013, no. 2, 76–85 (In Russian)

[14] Artemieva N. A., Bakanas E. S., Barabanov S. I., Vityazev A. V., Volkov V. A., Glazachev D. O., Degtyar' V. G., Yemel'yanenko V. V., Ivanov B. A., Kochetova O. M., Kulikova N. V., Medvedev Y. D., Naroyenkov S. A., Nemchinov I. V., Pechernikova G. V., Pol' V. G., Popova O. P., Rykhlova L. V., Svettsov V. V., Simonov A. V., Sokolov L. L., Timerbayev R. M., Chernetenko Y. A., Shor V. A., Shuvalov V. V., Shustov B. M., Asteroid-comet hazard: yesterday, today and tomorrow, Fizmatlit Publ., M., 2013, 384 pp. (In Russian)