Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 102-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the problem of stabilization of orbital motion in the vicinity of the collinear libration point $L_1$ of the Sun–Earth system. The key concept of the suggested approach is the so-called hazard function. The latter is a function of the phase variables of the Hill's approximation of the circular restricted three-body problem, which is defined as a nondegenerate solution of some partial differential equation. The hazard function can be used for the analytical representation of an invariant manifold in the vicinity of the libration point. Approximations of the hazard function of the first, second and the third order are obtained with the method of indefinite coefficients. These approximations are then used in the construction of three motion stabilizing control laws. Numerical modelling of the controlled motion is applied to compare these laws with respect to the energy consumptions. Refs 8. Figs 3. Table 1.
Keywords: restricted three-body problem, collinear libration point, invariant manifold, stabilizing control of motion.
@article{VSPUI_2017_13_1_a9,
     author = {G. P. Maliavkin and V. A. Shmyrov and A. S. Shmyrov},
     title = {Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {102--112},
     year = {2017},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a9/}
}
TY  - JOUR
AU  - G. P. Maliavkin
AU  - V. A. Shmyrov
AU  - A. S. Shmyrov
TI  - Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 102
EP  - 112
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a9/
LA  - ru
ID  - VSPUI_2017_13_1_a9
ER  - 
%0 Journal Article
%A G. P. Maliavkin
%A V. A. Shmyrov
%A A. S. Shmyrov
%T Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 102-112
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a9/
%G ru
%F VSPUI_2017_13_1_a9
G. P. Maliavkin; V. A. Shmyrov; A. S. Shmyrov. Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 102-112. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a9/

[1] Markeev A. P., Libration points in celestial mechanics and space dynamics, Nauka Publ., M., 1978, 312 pp. (In Russian)

[2] Shmyrov V. A., “Stabilization of controlled orbital motion of a spacecraft in the neighbourhood of the collinear libration point $L_1$”, Vestnik of Saint Petersburg State University. Series 10. Applied mathematics. Computer science. Control processes, 2005, no. 2, 193–199 (In Russian)

[3] Simó C., Stuchi T. J., “Central stable/unstable manifolds and the destruction of KAM Tori in the planar Hill problem”, Physica D, 140:1–2 (2000), 1–32 | DOI | MR | Zbl

[4] Shmyrov A. S., Shmyrov V. A., “On the asymptotic stability with respect to a part of the variables of the orbital motion of a spacecraft in the neighbourhood of a collinear libration point”, Vestnik of Saint Petersburg State University. Series 10. Applied mathematics. Computer science. Control processes, 2009, no. 4, 250–257 (In Russian)

[5] Shmyrov A., Shmyrov V., “On controllability region of orbital motion near $L_1$”, Applied Mathematical Sciences, 9:145–148 (2015), 7229–7236 | DOI

[6] Shmyrov A. S., Shmyrov V. A., “Optimal orbital motion control synthesis in the neighbourhood of a collinear libration point”, Vestnik of Saint Petersburg State University. Series 1. Mathematics. Mechanics. Astronomy, 2012, no. 4, 139–146 (In Russian)

[7] Birkhoff G. D., Dynamical systems, American Mathematical Society, Providence, R. I., 1966, 305 pp. | MR | Zbl

[8] Gantmaher F. R., Lectures on the analytical mechanics, Fizmatlit Publ., M., 2005, 264 pp. (In Russian)