@article{VSPUI_2017_13_1_a9,
author = {G. P. Maliavkin and V. A. Shmyrov and A. S. Shmyrov},
title = {Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {102--112},
year = {2017},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a9/}
}
TY - JOUR AU - G. P. Maliavkin AU - V. A. Shmyrov AU - A. S. Shmyrov TI - Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2017 SP - 102 EP - 112 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a9/ LA - ru ID - VSPUI_2017_13_1_a9 ER -
%0 Journal Article %A G. P. Maliavkin %A V. A. Shmyrov %A A. S. Shmyrov %T Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2017 %P 102-112 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a9/ %G ru %F VSPUI_2017_13_1_a9
G. P. Maliavkin; V. A. Shmyrov; A. S. Shmyrov. Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 102-112. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a9/
[1] Markeev A. P., Libration points in celestial mechanics and space dynamics, Nauka Publ., M., 1978, 312 pp. (In Russian)
[2] Shmyrov V. A., “Stabilization of controlled orbital motion of a spacecraft in the neighbourhood of the collinear libration point $L_1$”, Vestnik of Saint Petersburg State University. Series 10. Applied mathematics. Computer science. Control processes, 2005, no. 2, 193–199 (In Russian)
[3] Simó C., Stuchi T. J., “Central stable/unstable manifolds and the destruction of KAM Tori in the planar Hill problem”, Physica D, 140:1–2 (2000), 1–32 | DOI | MR | Zbl
[4] Shmyrov A. S., Shmyrov V. A., “On the asymptotic stability with respect to a part of the variables of the orbital motion of a spacecraft in the neighbourhood of a collinear libration point”, Vestnik of Saint Petersburg State University. Series 10. Applied mathematics. Computer science. Control processes, 2009, no. 4, 250–257 (In Russian)
[5] Shmyrov A., Shmyrov V., “On controllability region of orbital motion near $L_1$”, Applied Mathematical Sciences, 9:145–148 (2015), 7229–7236 | DOI
[6] Shmyrov A. S., Shmyrov V. A., “Optimal orbital motion control synthesis in the neighbourhood of a collinear libration point”, Vestnik of Saint Petersburg State University. Series 1. Mathematics. Mechanics. Astronomy, 2012, no. 4, 139–146 (In Russian)
[7] Birkhoff G. D., Dynamical systems, American Mathematical Society, Providence, R. I., 1966, 305 pp. | MR | Zbl
[8] Gantmaher F. R., Lectures on the analytical mechanics, Fizmatlit Publ., M., 2005, 264 pp. (In Russian)