Generalized model of information spreading in continuous time
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 74-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The diffusion of information or spreading of rumours is a social phenomenon and plays a significant role in a daily life. Rumours play a very important role in social life and have existed as a social fact since ancient times. The rumour model explains the spread of rumours and serves as a tool for understanding this social phenomenon. Rumours in economics have become more intensively discussed and investigated in recent decades. There are examples of rumour dynamics based on communication and exchange at auctions, in the stock markets and during trading. These backgrounds and motivations give the basis for a mathematical model of the diffusion of information or the spreading of rumours. We give a model that is a generalization of the classical Maki–Thompson model and the stochastic Daley–Kendall model of rumour spreading using the probability approach. A new parameter is suggested for the probability of rumour spreading. The generalized model is formulated and is considered in continuous time. The process of spreading rumours is described by a system of linear differential equations. The general solution for dynamics of spreading of rumours is constructed. Refs 13. Figs 2. Tables 2.
Keywords: information networks, differential equations, probability, spreading rumors.
@article{VSPUI_2017_13_1_a6,
     author = {V. V. Karelin and V. M. Bure and M. V. Svirkin},
     title = {Generalized model of information spreading in continuous time},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {74--80},
     year = {2017},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a6/}
}
TY  - JOUR
AU  - V. V. Karelin
AU  - V. M. Bure
AU  - M. V. Svirkin
TI  - Generalized model of information spreading in continuous time
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 74
EP  - 80
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a6/
LA  - ru
ID  - VSPUI_2017_13_1_a6
ER  - 
%0 Journal Article
%A V. V. Karelin
%A V. M. Bure
%A M. V. Svirkin
%T Generalized model of information spreading in continuous time
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 74-80
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a6/
%G ru
%F VSPUI_2017_13_1_a6
V. V. Karelin; V. M. Bure; M. V. Svirkin. Generalized model of information spreading in continuous time. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 74-80. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a6/

[1] Gubanov D. A., Novikov D. A., Chkhartishvili A. G., Social networks: models of informational influence, control and confrontation, Fizmatlit Publ., M., 2010, 228 pp. (In Russian)

[2] Belen S., Kropat E., Weber G.-W., “On the classical Maki–Thompson rumour model in continuous time”, Central European Journal of Operations Researches, 19 (2011), 1–17 | DOI | MR | Zbl

[3] Rosnow R. L., “Psychology of rumor reconsidered”, Psychol. Bull., 87:3 (1980), 578–591 | DOI

[4] Rosnow R. L., “Inside rumor: a personal journey”, Amer. Psychol., 46:5 (1991), 484–496 | DOI

[5] Difonzo N., Bordia P., “Rumor and prediction: making sense (but losing dollars) in the stock market”, Organ. Behav. Hum. Decis. Process., 71:3 (1997), 329–353 | DOI

[6] Maki D. P., Thompson M., Mathematical models and applications, Prentice-Hall, Englewood Cliffs, 1973, 274 pp. | MR

[7] Daley D. J., Kendall D. G., “Stochastic rumours”, J. Inst. Math. Appl., 1 (1965), 42–55 | DOI | MR

[8] Karelin V. V., Bure V. M., Polyakova L. N., Elfimov A. N., “Control problem of a deterministic queuing system”, Applied Mathematical Sciences, 10:21–24 (2016), 1023–1030 | DOI

[9] Bure V. M., Karelin V. V., Polyakova L. N., “Probabilistic model of terminal services”, Applied Mathematical Sciences, 10:39 (2016), 1945–1952 | DOI

[10] Bure V. M., Karelin V. V., Polyakova L. N., “The problem of resource allocation between the protection system and constructing redundant components”, Applied Mathematical Sciences, 9:93–96 (2015), 4771–4779 | DOI

[11] Yakushev V. P., Karelin V. V., Bure V. M., Parilina E. M., “Soil acidity adaptive control problem”, Stochastic enviromental research and risk assessment, 29:6 (2015), 1671–1677 (accessed: 15.10.2016) | DOI | MR

[12] Bure V., Parilina E., Sedakov A., “Consensus in social networks with heterogeneous agents and two centers of influence”, Intern. conference “Stability and control processes” in memory of V. I. Zubov (SCP) joined with 21st Intern. workshop on beam dynamics and optimization (BDO) (Saint Petersburg, 05–09 Oct. 2015), Saint Petersburg, 2015, 233–235 (In Germany)

[13] Kamke E., Differentialgleichungen: Losungsmethoden und Losungen, v. I, Gewohnliche Differentialgleichungen, Teubner, Leipzig, 1959, 668 pp. | MR