@article{VSPUI_2017_13_1_a6,
author = {V. V. Karelin and V. M. Bure and M. V. Svirkin},
title = {Generalized model of information spreading in continuous time},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {74--80},
year = {2017},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a6/}
}
TY - JOUR AU - V. V. Karelin AU - V. M. Bure AU - M. V. Svirkin TI - Generalized model of information spreading in continuous time JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2017 SP - 74 EP - 80 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a6/ LA - ru ID - VSPUI_2017_13_1_a6 ER -
%0 Journal Article %A V. V. Karelin %A V. M. Bure %A M. V. Svirkin %T Generalized model of information spreading in continuous time %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2017 %P 74-80 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a6/ %G ru %F VSPUI_2017_13_1_a6
V. V. Karelin; V. M. Bure; M. V. Svirkin. Generalized model of information spreading in continuous time. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 74-80. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a6/
[1] Gubanov D. A., Novikov D. A., Chkhartishvili A. G., Social networks: models of informational influence, control and confrontation, Fizmatlit Publ., M., 2010, 228 pp. (In Russian)
[2] Belen S., Kropat E., Weber G.-W., “On the classical Maki–Thompson rumour model in continuous time”, Central European Journal of Operations Researches, 19 (2011), 1–17 | DOI | MR | Zbl
[3] Rosnow R. L., “Psychology of rumor reconsidered”, Psychol. Bull., 87:3 (1980), 578–591 | DOI
[4] Rosnow R. L., “Inside rumor: a personal journey”, Amer. Psychol., 46:5 (1991), 484–496 | DOI
[5] Difonzo N., Bordia P., “Rumor and prediction: making sense (but losing dollars) in the stock market”, Organ. Behav. Hum. Decis. Process., 71:3 (1997), 329–353 | DOI
[6] Maki D. P., Thompson M., Mathematical models and applications, Prentice-Hall, Englewood Cliffs, 1973, 274 pp. | MR
[7] Daley D. J., Kendall D. G., “Stochastic rumours”, J. Inst. Math. Appl., 1 (1965), 42–55 | DOI | MR
[8] Karelin V. V., Bure V. M., Polyakova L. N., Elfimov A. N., “Control problem of a deterministic queuing system”, Applied Mathematical Sciences, 10:21–24 (2016), 1023–1030 | DOI
[9] Bure V. M., Karelin V. V., Polyakova L. N., “Probabilistic model of terminal services”, Applied Mathematical Sciences, 10:39 (2016), 1945–1952 | DOI
[10] Bure V. M., Karelin V. V., Polyakova L. N., “The problem of resource allocation between the protection system and constructing redundant components”, Applied Mathematical Sciences, 9:93–96 (2015), 4771–4779 | DOI
[11] Yakushev V. P., Karelin V. V., Bure V. M., Parilina E. M., “Soil acidity adaptive control problem”, Stochastic enviromental research and risk assessment, 29:6 (2015), 1671–1677 (accessed: 15.10.2016) | DOI | MR
[12] Bure V., Parilina E., Sedakov A., “Consensus in social networks with heterogeneous agents and two centers of influence”, Intern. conference “Stability and control processes” in memory of V. I. Zubov (SCP) joined with 21st Intern. workshop on beam dynamics and optimization (BDO) (Saint Petersburg, 05–09 Oct. 2015), Saint Petersburg, 2015, 233–235 (In Germany)
[13] Kamke E., Differentialgleichungen: Losungsmethoden und Losungen, v. I, Gewohnliche Differentialgleichungen, Teubner, Leipzig, 1959, 668 pp. | MR