Mots-clés : classification.
@article{VSPUI_2017_13_1_a4,
author = {K. Yu. Staroverova and V. M. Bure},
title = {Characteristics based dissimilarity measure for time series},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {51--60},
year = {2017},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a4/}
}
TY - JOUR AU - K. Yu. Staroverova AU - V. M. Bure TI - Characteristics based dissimilarity measure for time series JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2017 SP - 51 EP - 60 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a4/ LA - ru ID - VSPUI_2017_13_1_a4 ER -
%0 Journal Article %A K. Yu. Staroverova %A V. M. Bure %T Characteristics based dissimilarity measure for time series %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2017 %P 51-60 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a4/ %G ru %F VSPUI_2017_13_1_a4
K. Yu. Staroverova; V. M. Bure. Characteristics based dissimilarity measure for time series. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 51-60. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a4/
[1] Sankoff D., Kruskal J., Time warps, string edits, and macromolecules: the theory and practice of sequence comparison, Addison Wesley Publ. Company, Ontario, 1983, 382 pp. | MR
[2] Berndt D. J., Clifford J., “Using dynamic time warping to find patterns in time series”, KDD workshop on knowledge discovery in databases (1994), 359–370
[3] Oates T., Firoiu L., Cohen P. R., “Clustering time series with hidden Markov models and dynamic time warping”, Proc. of the IJCAI-99 workshop on neural, symbolic and reinforcement learning methods for sequence learning (1999), 17–21
[4] Maharaj E. A., “A significance test for classifying arma models”, Journal of Statistical Computation and Simulation, 54:4 (1996), 305–331 | DOI | MR | Zbl
[5] Corduas M., Piccolo D., “Time series clustering and classification by the autoregressive metric”, Computational Statistics Data Analysis, 52:4 (2008), 1860–1872 | DOI | MR | Zbl
[6] Fu T. C., “A Review on time series data mining”, Engineering Applications of Artificial Intelligence, 24:1 (2011), 164–181 | DOI
[7] Montero P. M., Vilar J. A., Time series clustering utilities, , Feb. 2015 (data obrascheniya: 01.11.2016) https://cran.r-project.org/web/packages/TSclust/TSclust.pdf
[8] Fan J., Zhang W., “Generalised likelihood ratio tests for spectral density”, Biometrika, 91:1 (2004), 195–209 | DOI | MR | Zbl
[9] Cilibrasi R., Vitànyi P. M., “Clustering by compression”, IEEE Transactions on Information Theory, 51:4 (2005), 1523–1545 | DOI | MR | Zbl
[10] Alcock R. J., Manolopoulos Y., “Time-series similarity queries employing a feature-based approach”, 7th Hellenic Conference on Informatics (1999), 27–29
[11] Sivogolovko E. V., “Methods of estimation of smooth clustering quality”, Computer tools in education, 2011, no. 4, 14–31 (In Russian)
[12] Montero P., Vilar J., “TSclust: An R package for time series clustering”, Journal of Statistical Software, 62:1 (2015), 1–43