Characteristics based dissimilarity measure for time series
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 51-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is necessary to invent dissimilarity measures which take into account the temporal nature of a time series. Such measures can be utilized for classification and clustering of time series. Great work has been conducted on this problem, but most measures use dimensionality reduction techniques. Such methods give accurate results for big data, but demonstrate a weakness now in short time series clustering. Many fields such as economics, demography, sociology, and others are presented by short time series. That is why a new method based on time series characteristics is introduced here. It is based on time series characteristics which are split into three groups: constant, dynamic and behavioural. A researcher can control the influence of the characteristics of each group as a result. Besides, we present a brief description of up-to-date dissimilarity measures from the R environment. The results of experiments on two synthetic data sets and comparison of our measure and other up-to-date methods are then presented. Refs 12. Figs 2. Table 1.
Keywords: clustering, time series similarity measure
Mots-clés : classification.
@article{VSPUI_2017_13_1_a4,
     author = {K. Yu. Staroverova and V. M. Bure},
     title = {Characteristics based dissimilarity measure for time series},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {51--60},
     year = {2017},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a4/}
}
TY  - JOUR
AU  - K. Yu. Staroverova
AU  - V. M. Bure
TI  - Characteristics based dissimilarity measure for time series
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 51
EP  - 60
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a4/
LA  - ru
ID  - VSPUI_2017_13_1_a4
ER  - 
%0 Journal Article
%A K. Yu. Staroverova
%A V. M. Bure
%T Characteristics based dissimilarity measure for time series
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 51-60
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a4/
%G ru
%F VSPUI_2017_13_1_a4
K. Yu. Staroverova; V. M. Bure. Characteristics based dissimilarity measure for time series. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 51-60. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a4/

[1] Sankoff D., Kruskal J., Time warps, string edits, and macromolecules: the theory and practice of sequence comparison, Addison Wesley Publ. Company, Ontario, 1983, 382 pp. | MR

[2] Berndt D. J., Clifford J., “Using dynamic time warping to find patterns in time series”, KDD workshop on knowledge discovery in databases (1994), 359–370

[3] Oates T., Firoiu L., Cohen P. R., “Clustering time series with hidden Markov models and dynamic time warping”, Proc. of the IJCAI-99 workshop on neural, symbolic and reinforcement learning methods for sequence learning (1999), 17–21

[4] Maharaj E. A., “A significance test for classifying arma models”, Journal of Statistical Computation and Simulation, 54:4 (1996), 305–331 | DOI | MR | Zbl

[5] Corduas M., Piccolo D., “Time series clustering and classification by the autoregressive metric”, Computational Statistics Data Analysis, 52:4 (2008), 1860–1872 | DOI | MR | Zbl

[6] Fu T. C., “A Review on time series data mining”, Engineering Applications of Artificial Intelligence, 24:1 (2011), 164–181 | DOI

[7] Montero P. M., Vilar J. A., Time series clustering utilities, , Feb. 2015 (data obrascheniya: 01.11.2016) https://cran.r-project.org/web/packages/TSclust/TSclust.pdf

[8] Fan J., Zhang W., “Generalised likelihood ratio tests for spectral density”, Biometrika, 91:1 (2004), 195–209 | DOI | MR | Zbl

[9] Cilibrasi R., Vitànyi P. M., “Clustering by compression”, IEEE Transactions on Information Theory, 51:4 (2005), 1523–1545 | DOI | MR | Zbl

[10] Alcock R. J., Manolopoulos Y., “Time-series similarity queries employing a feature-based approach”, 7th Hellenic Conference on Informatics (1999), 27–29

[11] Sivogolovko E. V., “Methods of estimation of smooth clustering quality”, Computer tools in education, 2011, no. 4, 14–31 (In Russian)

[12] Montero P., Vilar J., “TSclust: An R package for time series clustering”, Journal of Statistical Software, 62:1 (2015), 1–43