A model study of blood flow in branching vessels
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 42-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of research was to develop a mathematical model for pulsating blood flow in large blood vessels with complex spatial geometry including branching. A part of the aorta with its branches was chosen as an example. The blood vessels were considered as non-deformable curved cylinders. The blood was considered as incompressible non-Newtonian liquid with the power kind of relationship between the stress and shift velocity. The pulse flow pattern was created presetting the pulsating parabolic velocity profile as the boundary condition at the input cross-section. The calculations were performed with use of the computation system ABAQUS. As result the distributions of stress and velocity at the each time moment were obtained. In doing so the generations of the vortexes and reverse flows were revealed. Refs 9. Figs 10.
Keywords: mathematical modelling, blood flow, branching vessels, distributions of stress and velocity.
@article{VSPUI_2017_13_1_a3,
     author = {V. P. Tregubov and D. H. Mukhtarova},
     title = {A model study of blood flow in branching vessels},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {42--50},
     year = {2017},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a3/}
}
TY  - JOUR
AU  - V. P. Tregubov
AU  - D. H. Mukhtarova
TI  - A model study of blood flow in branching vessels
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 42
EP  - 50
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a3/
LA  - en
ID  - VSPUI_2017_13_1_a3
ER  - 
%0 Journal Article
%A V. P. Tregubov
%A D. H. Mukhtarova
%T A model study of blood flow in branching vessels
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 42-50
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a3/
%G en
%F VSPUI_2017_13_1_a3
V. P. Tregubov; D. H. Mukhtarova. A model study of blood flow in branching vessels. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 42-50. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a3/

[1] Siginer D. A., De Kee D., Chhabra R. P., Advances in the Flow and Reology of Non-Newtonian Fluids, Intown, Elsevier Publ., 1999, 1515 pp.

[2] Gijsen F. J. H., Allanic E., Van De Vosse F. N., Janssen J. D., “The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 900 curved tube”, Journal of Biomechanics, 32 (1999), 705–713 | DOI

[3] Chen J., Lu X.-Y., “Numerical investigation of the non-Newtonian blood flow in a bifurcation model with non-planar branch”, Journal of Biomechanics, 37:12 (2004), 1899–1911 | DOI

[4] Hoogstraten H. W., Kootstra J. G., Hillen B., Krijger J. K. B., Wensing P. J. W., “Numerical simulation of blood flow in an artery with two successive bends”, Journal of Biomechanics, 29:8 (1996), 1075–1083 | DOI

[5] Papaharilaou Y., Doorly D. J., Sherwin S. J., “The influence of out-in-plane geometry on pulsatile flow within a distal end-to-side anastomosis”, Journal of Biomechanics, 35:9 (2002), 1225–1239 | DOI

[6] Quarteroni A., Tuveri M., Veneziani A., “Computational vascular fluid dynamics: problems, models and methods”, Computing and Visualization in Science, 2 (2000), 163–197 | DOI | Zbl

[7] Ratkina S. V., Tregubov V. P., “Mathematical simulation of a blood stream in large arteries”, Intern. Conf. of the Polish Society of Biomechanics, Book of abstr., 2010, 187–188

[8] Migliavacca F., Yates R., Pennati G., Dubini G., Fumero R., De Leval M. R., “Calculating blood flow from Doppler measurements in the systemic-to-pulmonary artery shunt after the Norwood operation: a method based on CFD”, Ultrasound in Medicine and Biology, 26:2 (2000), 209–219 | DOI

[9] Tregubov V. P., Radichkina A. O., “Mathematical modelling of the left ventricle cinematic during a contraction”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2013, no. 4, 67–73 (In Russian)