Mots-clés : consistent matrix, matrix approximation.
@article{VSPUI_2017_13_1_a2,
author = {N. Krivulin and V. A. Ageev and I. V. Gladkikh},
title = {Application of methods of tropical optimization for evaluating alternatives based on pairwise comparisons},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {27--41},
year = {2017},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a2/}
}
TY - JOUR AU - N. Krivulin AU - V. A. Ageev AU - I. V. Gladkikh TI - Application of methods of tropical optimization for evaluating alternatives based on pairwise comparisons JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2017 SP - 27 EP - 41 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a2/ LA - ru ID - VSPUI_2017_13_1_a2 ER -
%0 Journal Article %A N. Krivulin %A V. A. Ageev %A I. V. Gladkikh %T Application of methods of tropical optimization for evaluating alternatives based on pairwise comparisons %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2017 %P 27-41 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a2/ %G ru %F VSPUI_2017_13_1_a2
N. Krivulin; V. A. Ageev; I. V. Gladkikh. Application of methods of tropical optimization for evaluating alternatives based on pairwise comparisons. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 27-41. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a2/
[1] Gladkikh I. V., Svetlanova Zh. V., “The measurement of product characteristics importance in marketing research”, Vestnik of Saint Petersburg University. Series 8. Management, 2006, no. 2, 65–87 (In Russian)
[2] Thurstone L. L., “A law of comparative judgment”, Psychological Review, 34:4 (1927), 273–286 | DOI
[3] David H. A., The method of paired comparisons, Griffin's Statistical Monographs and Courses, 12, Griffin, London, 1963, 124 pp. | MR
[4] Saaty T. L., The analytic hierarchy process: planning, priority setting, resource allocation, McGraw-Hill, New York, 1980, 281 pp. | MR | Zbl
[5] Nogin V. D., “A simplified variant of a method for the analysis of hierarchies, based on a nonlinear convolution of criteria”, Journal of Computational Mathematics and Mathematical Physics, 44:7 (2004), 1261–1270 (In Russian) | Zbl
[6] Saaty T. L., Vargas L. G., “Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios”, Math. Modelling, 5:5 (1984), 309–324 | DOI | MR | Zbl
[7] Barzilai J., “Deriving weights from pairwise comparison matrices”, J. Oper. Res. Soc., 48:12 (1997), 1226–1232 | DOI | Zbl
[8] Chu M. T., “On the optimal consistent approximation to pairwise comparison matrices”, Linear Algebra Appl., 272:1–3 (1998), 155–168 | DOI | MR | Zbl
[9] Farkas A., Lancaster P., Rózsa P., “Consistency adjustments for pairwise comparison matrices”, Numer. Linear Algebra Appl., 10:8 (2003), 689–700 | DOI | MR | Zbl
[10] Elsner L., van den Driessche P., “Max-algebra and pairwise comparison matrices. II”, Linear Algebra Appl., 432:4 (2010), 927–935 | DOI | MR | Zbl
[11] Tran N. M., “Pairwise ranking: Choice of method can produce arbitrarily different rank order”, Linear Algebra Appl., 438:3 (2013), 1012–1024 | DOI | MR | Zbl
[12] Gursoy B. B., Mason O., Sergeev S., “The analytic hierarchy process, max algebra and multi-objective optimisation”, Linear Algebra Appl., 438:7 (2013), 2911–2928 | DOI | MR | Zbl
[13] Maslov V. P., Kolokol'tsov V. N., Idempotent analysis and its applications in optimal control, Fizmatlit Publ., M., 1994, 144 pp. (In Russian)
[14] Golan J. S., Semirings and affine equations over them, Mathematics and Its Applications, 556, Springer, New York, 2003, 256 pp. | MR
[15] Heidergott B., Olsder G. J., van der Woude J., Max plus at work, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2006, 226 pp. | MR | Zbl
[16] Krivulin N. K., Methods of idempotent algebra for problems in modeling and analysis of complex systems, Saint Petersburg University Publ., Saint Petersburg, 2009, 256 pp. (In Russian)
[17] Krivulin N. K., Gladkikh I. V., “Tropical mathematics-based methods for constructing a consistent matrix of pairwise comparisons”, Models and methods of tropical mathematics with applications to problems in economics and management, VVM Publ., Saint Petersburg, 2013, 4–32 (In Russian)
[18] Krivulin N. K., Gladkikh I. V., “Computation of the consistent pairwise comparison matrix in marketing research by using methods of tropical mathematics”, Vestnik of Saint Petersburg University. Series 8. Management, 2015, no. 1, 3–43 (In Russian)
[19] Krivulin N., “Rating alternatives from pairwise comparisons by solving tropical optimization problems”, 12th Intern. Conference on Fuzzy Systems and Knowledge Discovery (FSKD), eds. Z. Tang, J. Du, S. Yin, L. He, R. Li, IEEE, 2015, 162–167 | DOI | MR
[20] Krivulin N., “Using tropical optimization techniques to evaluate alternatives via pairwise comparisons”, Proc. 7th SIAM Workshop on Combinatorial Scientific Computing, eds. A. H. Gebremedhin, E. G. Boman, B. Ucar, SIAM, Philadelphia, 2016, 62–72 | DOI
[21] Krivulin N., “Extremal properties of tropical eigenvalues and solutions to tropical optimization problems”, Linear Algebra Appl., 468 (2015), 211–232 | DOI | MR | Zbl
[22] Krivulin N., “Solving a tropical optimization problem via matrix sparsification”, Relational and Algebraic Methods in Computer Science, Lecture Notes in Comput. Sci., 9348, eds. W. Kahl, M. Winter, J. N. Oliveira, Springer, Cham, 2015, 326–343 | DOI | MR | Zbl
[23] Krivulin N., “A maximization problem in tropical mathematics: A complete solution and application examples”, Informatica, 27:3 (2016), 587–606 | DOI