Method for determining optical constants and the thickness of the thin film
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 17-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Here are presented the results of the development and application of methods for determining the optical constants and thickness of thin films. The generalized target model function is formed to determine the unmeasured parameters. The model is applied by using the least squares method and the steepest descent. Increased efficiency is achieved by using a three-step processing algorithm. The proposed method was applied to calculate the characteristics of the multi-alkali photocathode, which is a complex compound having in its composition antimonides of potassium, sodium and cesium. A comparison of the calculation results with the data given in the literature is presented. Refs 11. Figs 4.
Keywords: thin film, optical constants, the thickness of the thin film, the generalized target model function, the data processing algorithm.
@article{VSPUI_2017_13_1_a1,
     author = {A. G. Karpov and V. A. Klemeshev},
     title = {Method for determining optical constants and the thickness of the thin film},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {17--26},
     year = {2017},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a1/}
}
TY  - JOUR
AU  - A. G. Karpov
AU  - V. A. Klemeshev
TI  - Method for determining optical constants and the thickness of the thin film
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2017
SP  - 17
EP  - 26
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a1/
LA  - en
ID  - VSPUI_2017_13_1_a1
ER  - 
%0 Journal Article
%A A. G. Karpov
%A V. A. Klemeshev
%T Method for determining optical constants and the thickness of the thin film
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2017
%P 17-26
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a1/
%G en
%F VSPUI_2017_13_1_a1
A. G. Karpov; V. A. Klemeshev. Method for determining optical constants and the thickness of the thin film. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 13 (2017) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/VSPUI_2017_13_1_a1/

[1] Egorov N. V., Antonova L. I., Antonov S. R., “Study of the emission properties of a W-Cs$_3$Sb field-emission cathode”, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Technique, 1:4 (2007), 487–495 | DOI

[2] Egorov N. V., Karpov A. G., Antonova L. I., Fedorov A. G., Trofimov V. V., Antonov S. R., “Technique for investigating the spatial structure of thin films at a nanolevel”, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 5:5 (2011), 992–995 | DOI

[3] Kossel D., Deutscher K., Hirshberg K., “Interference photocathodes”, Advances in electronics and electron physics, 28a (1969), 419–431 | DOI | MR

[4] Szozyrlowski J., “Determination of optical constants of real thin films”, J. Phys. D. Appl. Phys., 11 (1978), 583–594 | DOI

[5] Sizelove J. R., Love III J. A., “Analysis of Translucent and Opaque Photocathodes”, Appl. Optics, 6 (1967), 356–357 | DOI

[6] Timan H., “Optical characteristics and constants of high efficiency photoemitters”, Revue Technique Thomson CSF, 8 (1976), 49–80

[7] Karpov A. G., Klemeshev V. A., Trofimov V. V., “Mathematical foundations of information processing methods for dielectric spectroscopy of thin films”, Vestnik of Saint Petersburg State University. Series 10. Applied mathematics. Computer sciences. Control processes, 2015, no. 4, 13–26 (In Russian)

[8] Pshenichny B. P., Danilin Y. M., Numerical methods in extreme tasks, Nauka Publ., M., 1975, 320 pp. (In Russian) | MR

[9] Tiurin Iu. N., Makarov A. A., Statistical analysis of the data on the computer, Infra-M Publ., M., 1998, 528 pp. (In Russian)

[10] Dai Y. H., Yuan Y., “Convergence properties of the Fletcher–Reeves method”, The IMA Journal of Numerical Analysis, 16 (1996), 155–164 | DOI | MR | Zbl

[11] Kaiser W. J., Bell L. D., “Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy”, Phys. Rev. Lett., 60 (1988), 1406–1410 | DOI